The tau mutation in Syrian hamsters (Mesocricetus auratus) is phenotypically expressed in a period of the circadian rhythm of about 20 h in homozygotes (SS) and about 22 h in heterozygotes (S+). The authors investigate whether this well-defined model for variation in circadian period exhibits associated changes in energy metabolism. In hamsters of the three genotypes (SS, S+, and wild type [WT]), oxygen consumption measurements were performed at 28 degrees C (thermoneutral), 18 degrees C, and (after acclimatization) 10 degrees C. After correction for body mass, SS tau mutant hamsters had a higher overall metabolic rate (average oxygen consumption per hour over 24 h) and a higher resting metabolic rate (the lowest 30-min oxygen consumption in the subjective day) than did WT hamsters at all ambient temperatures. S+ hamsters were intermediate in both after taking body mass into account. The differences in metabolism among the three genotypes indicate that the increase in metabolic rate was statistically indistinguishable from a proportional increase in circadian frequency. The oxygen consumption totals per circadian cycle (24 h for WT, 22 h for S+, and 20 h for SS mutants) were not statistically different among the genotypes after correcting for body mass. The possible roles of pleiotropic effects, of linkage to genes involved in growth and metabolism and of early ontogenetic influences are briefly discussed.