First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof

被引:109
作者
Moskow, S [1 ]
Vogelius, M [1 ]
机构
[1] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0308210500027050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let lambda(epsilon) be a Dirichlet eigenvalue of the 'periodically, rapidly oscillating' elliptic operator -del.(a(x/epsilon)del) and let lambda be a corresponding (simple) eigenvalue of the homogenised operator -del.(A del). We characterise the possible limit points of the ratio (lambda(epsilon)-lambda)/epsilon as epsilon-->0. Our characterisation is quite explicit when the underlying domain is a (planar) convex, classical polygon with sides of rational or infinite slopes. In particular, in this case it implies that there is often a continuum of such limit points.
引用
收藏
页码:1263 / 1299
页数:37
相关论文
共 18 条
[1]   HOMOGENIZATION OF ELLIPTIC PROBLEMS WITH LP BOUNDARY DATA [J].
AVELLANEDA, M ;
LIN, FH .
APPLIED MATHEMATICS AND OPTIMIZATION, 1987, 15 (02) :93-107
[2]   DIRECT AND INVERSE ERROR-ESTIMATES FOR FINITE-ELEMENTS WITH MESH REFINEMENTS [J].
BABUSKA, I ;
KELLOGG, RB ;
PITKARANTA, J .
NUMERISCHE MATHEMATIK, 1979, 33 (04) :447-471
[3]  
BENSOUSSAN A, 1980, ASYMPTOTIC ANAL PERI
[4]  
BENSOUSSAU A, 1978, P INT S STOCH DIFF E
[5]  
BERGH J, 1976, INERPOLATIONSPACES
[6]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[7]  
KESAVAN S, 1979, APPL MATH OPT, V5, P153, DOI 10.1007/BF01442554
[8]  
LANDIS EM, 1977, DOKL AKAD NAUK SSSR+, V235, P1253
[9]  
Lions J.-L., 1972, NONHOMOGENEOUS BOUND, V181
[10]  
Lions JL., 1981, Some Methods in the Mathematical Analysis of Systems and their Control