Ephrin-B2 forward signaling regulates somite patterning and neural crest cell development

被引:74
作者
Davy, Alice [1 ]
Soriano, Philippe [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Div Basic Sci, Program Dev Biol, Seattle, WA 98109 USA
关键词
neural crest cells; somites; ephrin; signaling;
D O I
10.1016/j.ydbio.2006.12.028
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetic studies in the mouse have implicated ephrin-B2 (encoded by the gene Efnb2) in blood vessel formation, cardiac development and remodeling of the lymphatic vasculature. Here we report that loss of ephrin-B2 leads to defects in populations of cranial and trunk neural crest cells (NCC) and to defective somite development. In addition, we show that Efnb1/Efnb2 double heterozygous embryos exhibit phenotypes in a number of NCC derivatives. Expression of one copy of a mutant version of Efnb2 that lacks tyrosine phosphorylation sites was sufficient to rescue the embryonic phenotypes associated with loss of Efnb2. Our results uncover an important role for ephrin-B2 in NCC and somites during embryogenesis and suggest that ephrin-B2 exerts many of its embryonic function via activation of forward signaling. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:182 / 193
页数:12
相关论文
共 48 条
[1]   The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration [J].
Adams, RH ;
Diella, F ;
Hennig, S ;
Helmbacher, F ;
Deutsch, U ;
Klein, R .
CELL, 2001, 104 (01) :57-69
[2]   Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis [J].
Adams, RH ;
Wilkinson, GA ;
Weiss, C ;
Diella, F ;
Gale, NW ;
Deutsch, U ;
Risau, W ;
Klein, R .
GENES & DEVELOPMENT, 1999, 13 (03) :295-306
[3]   Eph/Ephrin signaling regulates the mesenchymal-to-epithelial transition of the paraxial mesoderm during somite morphogenesis [J].
Barrios, A ;
Poole, RJ ;
Durbin, L ;
Brennan, C ;
Holder, N ;
Wilson, SW .
CURRENT BIOLOGY, 2003, 13 (18) :1571-1582
[4]   Tyrosine phosphorylation of transmembrane ligands for Eph receptors [J].
Bruckner, K ;
Pasquale, EB ;
Klein, R .
SCIENCE, 1997, 275 (5306) :1640-1643
[5]  
Chai Y, 2000, DEVELOPMENT, V127, P1671
[6]   Control of skeletal patterning by EphrinB1-EphB interactions [J].
Compagni, A ;
Logan, M ;
Klein, R ;
Adams, RH .
DEVELOPMENTAL CELL, 2003, 5 (02) :217-230
[7]   Ephrin-B2 reverse signaling is required for axon pathfinding and cardiac valve formation but not early vascular development [J].
Cowan, CA ;
Yokoyama, N ;
Saxena, A ;
Chumley, MJ ;
Silvany, RE ;
Baker, LA ;
Srivastava, D ;
Henkemeyer, M .
DEVELOPMENTAL BIOLOGY, 2004, 271 (02) :263-271
[8]   The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals [J].
Cowan, CA ;
Henkemeyer, M .
NATURE, 2001, 413 (6852) :174-179
[9]   Ephrin-B1 forward and reverse signaling are required during mouse development [J].
Davy, A ;
Aubin, J ;
Soriano, P .
GENES & DEVELOPMENT, 2004, 18 (05) :572-583
[10]   Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion [J].
Davy, A ;
Gale, NW ;
Murray, EW ;
Klinghoffer, RA ;
Soriano, P ;
Feuerstein, C ;
Robbins, SM .
GENES & DEVELOPMENT, 1999, 13 (23) :3125-3135