Effects of straw amendment and moisture on microbial communities in Chinese fluvo-aquic soil

被引:119
作者
Chen, Lin [1 ,2 ]
Zhang, Jiabao [1 ,3 ]
Zhao, Bingzi [1 ]
Yan, Pei [1 ]
Zhou, Guixiang [1 ]
Xin, Xiuli [1 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China
[3] Henan Agr Univ, Collaborat Innovat Ctr Food Crops Henan, Zhengzhou 450002, Peoples R China
关键词
Eukaryotic community; Microorganisms; Phospholipid fatty acids; Pyrosequencing; ENZYME-ACTIVITIES; CROP RESIDUES; RICE STRAW; EUKARYOTIC COMMUNITIES; CARBON MINERALIZATION; PHYLOGENETIC PROFILE; BACTERIAL DIVERSITY; FUNGAL COMMUNITIES; WHEAT-STRAW; PH GRADIENT;
D O I
10.1007/s11368-014-0924-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Returning crop straw into fields is a typical agricultural practice to resolve an oversupply of straw and improve soil fertility. Soil microorganisms, especially eukaryotic microorganisms, play a critical role in straw decomposition. To date, microbial communities in response to straw amendment at different moisture levels in Chinese fluvo-aquic soil are poorly understood. The aim of this study was to explore the effects of straw amendment and moisture on microbial communities in Chinese fluvo-aquic soil. Two soils (one was applied with organic manure, and the other was not applied with any fertilizer) from a long-term field experiment in the North China Plain were collected. Soils with and without straw amendment at 25 and 55 % of the average water-holding capacities of the two soils were incubated at 25 A degrees C for 80 days. All treatments were sampled 20 and 80 days after the start of incubation. Microbial biomass and community structure were analyzed by phospholipid fatty acids (PLFA) assay, and the eukaryotic diversity and community composition were assessed via barcoded pyrosequencing of the 18S ribosomal RNA (rRNA) gene amplicons. PLFA analysis showed that straw amendment increased the biomass of Gram-positive bacteria, Gram-negative bacteria, actinobacteria, and fungi and shifted microbial community structure. The varied straw availability resulted in a large variation in microbial community structure. In the presence of straw, actinobacterial and fungal biomass both decreased under high moisture content. 18S rRNA gene pyrosequencing indicated that straw amendment decreased eukaryotic diversity and richness and probably restructured the eukaryotic community. Under identical moisture content, long-term organic manure-fertilized soil had higher eukaryotic diversity and richness than the unfertilized soil. In the amended soils under high moisture content, the relative abundance of dominant fungal taxa (Dikarya subkingdom, Ascomycota phylum, and Pezizomycotina subphylum) decreased. Straw amendment increases microbial biomass, shifts microbial community structure, and decreases eukaryotic diversity and richness. High moisture content probably has a negative effect on fungal growth in the amended soils. In conclusion, microbial communities in Chinese fluvo-aquic soil are significantly affected by straw amendment at different moisture levels.
引用
收藏
页码:1829 / 1840
页数:12
相关论文
共 59 条
[1]   Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil [J].
Aciego Pietri, J. C. ;
Brookes, P. C. .
SOIL BIOLOGY & BIOCHEMISTRY, 2009, 41 (07) :1396-1405
[2]   Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use [J].
Acosta-Martinez, V. ;
Dowd, S. ;
Sun, Y. ;
Allen, V. .
SOIL BIOLOGY & BIOCHEMISTRY, 2008, 40 (11) :2762-2770
[3]  
[Anonymous], 2010, LANG ENV STAT COMP
[4]   In situ detection of changes in soil bacterial and fungal activities by measuring 13C incorporation into soil phospholipid fatty acids from 13C acetate [J].
Arao, T .
SOIL BIOLOGY & BIOCHEMISTRY, 1999, 31 (07) :1015-1020
[5]   Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques [J].
Bååth, E ;
Anderson, TH .
SOIL BIOLOGY & BIOCHEMISTRY, 2003, 35 (07) :955-963
[6]   Impact of wheat straw decomposition on successional patterns of soil microbial community structure [J].
Bastian, Fabiola ;
Bouziri, Lamia ;
Nicolardot, Bernard ;
Ranjard, Lionel .
SOIL BIOLOGY & BIOCHEMISTRY, 2009, 41 (02) :262-275
[7]   Interaction of biochemical quality and particle size of crop residues and its effect on the microbial biomass and nitrogen dynamics following incorporation into soil [J].
Bending, GD ;
Turner, MK .
BIOLOGY AND FERTILITY OF SOILS, 1999, 29 (03) :319-327
[8]   Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing [J].
Blaalid, Rakel ;
Carlsen, Tor ;
Kumar, Surendra ;
Halvorsen, Rune ;
Ugland, Karl Inne ;
Fontana, Giovanni ;
Kauserud, Havard .
MOLECULAR ECOLOGY, 2012, 21 (08) :1897-1908
[9]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[10]   Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns [J].
Bossio, DA ;
Scow, KM .
MICROBIAL ECOLOGY, 1998, 35 (03) :265-278