The role of the D- and K-pathways of proton transfer in the function of the haem-copper oxidases

被引:129
作者
Wikström, M
Jasaitis, A
Backgren, C
Puustinen, A
Verkhovsky, MI
机构
[1] Univ Helsinki, Inst Biomed Sci, Dept Med Chem, FIN-00014 Helsinki, Finland
[2] Univ Helsinki, Bioctr Helsinki, FIN-00014 Helsinki, Finland
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2000年 / 1459卷 / 2-3期
关键词
D O I
10.1016/S0005-2728(00)00191-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The X-ray structures of several haem-copper oxidases now at hand have given important constraints on how these enzymes function. Yet, dynamic data are required to elucidate the mechanisms of electron and proton transfer, the activation of O-2 and its reduction to water, as well as the still enigmatic mechanism by which these enzymes couple the redox reaction to proton translocation. Here, some recent observations will be briefly reviewed with special emphasis on the functioning of the so-called D- and K-pathways of proton transfer. It turns out that only one of the eight protons taken up by the enzyme during its catalytic cycle is transferred via the K-pathway. The D-pathway is probably responsible for the transfer of all other protons, including the four that are pumped across the membrane. The unique K-pathway proton may be specifically required to aid O-O bond scission by the haem-copper oxidases. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:514 / 520
页数:7
相关论文
共 35 条
[1]   INVOLVEMENT OF INTRA-MITOCHONDRIAL PROTONS IN REDOX REACTIONS OF CYTOCHROME-A [J].
ARTZATBANOV, VY ;
KONSTANTINOV, AA ;
SKULACHEV, VP .
FEBS LETTERS, 1978, 87 (02) :180-185
[2]   OXYGEN ACTIVATION AND THE CONSERVATION OF ENERGY IN CELL RESPIRATION [J].
BABCOCK, GT ;
WIKSTROM, M .
NATURE, 1992, 356 (6367) :301-309
[3]   Proton translocation by cytochrome c oxidase can take place without the conserved glutamic acid in subunit I [J].
Backgren, C ;
Hummer, G ;
Wikström, M ;
Puustinen, A .
BIOCHEMISTRY, 2000, 39 (27) :7863-7867
[4]   Pathways of proton transfer in cytochrome c oxidase [J].
Brzezinski, P ;
Ädelroth, P .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1998, 30 (01) :99-107
[5]  
CAPITANIO N, 2000, IN PRESS BIOCHEMISTR
[6]  
CHANCE B, 1975, J BIOL CHEM, V250, P9226
[7]   Heme/copper terminal oxidases [J].
FergusonMiller, S ;
Babcock, GT .
CHEMICAL REVIEWS, 1996, 96 (07) :2889-2907
[8]  
FETTER JR, 1995, P NATL ACAD SCI USA, V92, P604
[9]   PROTON-TRANSFER IN CYTOCHROME BO(3) UBIQUINOL OXIDASE OF ESCHERICHIA-COLI - 2ND-SITE MUTATIONS IN SUBUNIT-I THAT RESTORE PROTON-PUMPING IN THE MUTANT ASP135-]ASN [J].
GARCIAHORSMAN, JA ;
PUUSTINEN, A ;
GENNIS, RB ;
WIKSTROM, M .
BIOCHEMISTRY, 1995, 34 (13) :4428-4433
[10]   Multiple proton-conducting pathways in cytochrome oxidase and a proposed role for the active-site tyrosine [J].
Gennis, RB .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1998, 1365 (1-2) :241-248