Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification

被引:270
作者
Ke, Yinghai [1 ]
Quackenbush, Lindi J. [1 ]
Im, Jungho [1 ]
机构
[1] SUNY Syracuse, Coll Environm Sci & Forestry, Dept Environm Resources & Forest Engn, Syracuse, NY 13210 USA
关键词
High spatial resolution multispectral imagery; LIDAR; Object-based classification; Decision tree; Forest classification; DENSITY LIDAR; INDIVIDUAL TREES; VEGETATION; ACCURACY; INTEGRATION; TEXTURE; LEAF;
D O I
10.1016/j.rse.2010.01.002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study evaluated the synergistic use of high spatial resolution multispectral imagery (i.e., QuickBird, 2.4 m) and low-posting-density LIDAR data (3 m) for forest species classification using an object-based approach. The integration of QuickBird multispectral imagery and LIDAR data was considered during image segmentation and the subsequent object-based classification. Three segmentation schemes were examined: (1) segmentation based solely on the spectral image layers; (2) segmentation based solely on MAR-derived layers; and (3) segmentation based on both the spectral and LIDAR-derived layers. For each segmentation scheme, objects were generated at twelve different scales in order to determine optimal scale parameters. Six categories of classification metrics were generated for each object based on spectral data alone, LIDAR data alone and the combination of both data sources. Machine learning decision trees were used to build classification rule sets. Quantitative segmentation quality assessment and classification accuracy results showed the integration of spectral and LIDAR data, in both image segmentation and object-based classification, improved the forest classification compared to using either data source independently. Better segmentation quality led to higher classification accuracy. The highest classification accuracy (Kappa 91.6%) was acquired when using both spectral- and LIDAR-derived metrics based on objects segmented from both spectral and LIDAR layers at scale parameter 250, where best segmentation quality was achieved. Optimal scales were analyzed for each segmentation-classification scheme. Statistical analysis of classification accuracies at different scales revealed that there was a range of optimal scales that provided statistically similar accuracy. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1141 / 1154
页数:14
相关论文
共 55 条
[1]  
[Anonymous], ECOGNITION USER GUID
[2]  
Baatz M., 2000, ANGEW GEOGRAPHISCHE, P12
[3]   Airborne laser scanning: basic relations and formulas [J].
Baltsavias, EP .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1999, 54 (2-3) :199-214
[4]   Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information [J].
Benz, UC ;
Hofmann, P ;
Willhauck, G ;
Lingenfelder, I ;
Heynen, M .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2004, 58 (3-4) :239-258
[5]  
Blaschke T, 2004, 2003 IEEE WORKSHOP ON ADVANCES IN TECHNIQUES FOR ANALYSIS OF REMOTELY SENSED DATA, P113
[6]  
Blaschke T., 2005, Gottinger Geographische Abhandlungen, V113, P1
[7]   Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America [J].
Brandtberg, T ;
Warner, TA ;
Landenberger, RE ;
McGraw, JB .
REMOTE SENSING OF ENVIRONMENT, 2003, 85 (03) :290-303
[8]   Object-based analysis of Ikonos-2 imagery for extraction of forest inventory parameters [J].
Chubey, MS ;
Franklin, SE ;
Wulder, MA .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2006, 72 (04) :383-394
[9]   Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales [J].
Clark, ML ;
Roberts, DA ;
Clark, DB .
REMOTE SENSING OF ENVIRONMENT, 2005, 96 (3-4) :375-398
[10]  
Congalton RussellG., 2008, Assessing the Accuracy of Remotely Sensed Data, V2nd, DOI DOI 10.1201/9781420055139