The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis

被引:111
作者
Bouché, N
Fait, A
Zik, M
Fromm, H [1 ]
机构
[1] Univ Leeds, Sch Biol, Leeds LS2 9JT, W Yorkshire, England
[2] CEA, Direct Sci Vivant, Serv Bioenerget, F-91191 Gif Sur Yvette, France
[3] Weizmann Inst Sci, Dept Plant Sci, IL-76100 Rehovot, Israel
[4] Tel Aviv Univ, Dept Plant Sci, IL-69978 Tel Aviv, Israel
关键词
Arabidopsis; gamma-aminobtyrate; glutamate decarboxylase; heat stress; roots; T-DNA insertion mutant;
D O I
10.1007/s11103-004-0650-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In plants, as in most eukaryotes, glutamate decarboxylase catalyses the synthesis of GABA. The Arabidopsis genome contains five glutamate decarboxylase genes and one of these genes (glutamate decarboxyl-asel; i.e. GAD1) is expressed specifically in roots. By isolating and analyzing three gad] T-DNA insertion alleles, derived from two ecotypes, we investigated the potential role of GAD1 in GABA production. We also analyzed a promoter region of the GAD1 gene and show that it confers root-specific expression when fused to reporter genes. Phenotypic analysis of the gad1 insertion mutants revealed that GABA levels in roots were drastically reduced compared with those in the wild type. The roots of the wild type contained about sevenfold more GABA than roots of the mutants. Disruption of the GAD] gene also prevented the accumulation of GABA in roots in response to heat stress. Our results show that the root-specific calcium/ calmodulin-regulated GAD1 plays a major role in GABA synthesis in plants under normal growth conditions and in response to stress.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 38 条
[1]   Rice (Oryza sativa) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus [J].
Akama, K ;
Akihiro, T ;
Kitagawa, M ;
Takaiwa, F .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2001, 1522 (03) :143-150
[2]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[3]   MOLECULAR AND BIOCHEMICAL-ANALYSIS OF CALMODULIN INTERACTIONS WITH THE CALMODULIN-BINDING DOMAIN OF PLANT GLUTAMATE-DECARBOXYLASE [J].
ARAZI, T ;
BAUM, G ;
SNEDDEN, WA ;
SHELP, BJ ;
FROMM, H .
PLANT PHYSIOLOGY, 1995, 108 (02) :551-561
[4]  
Aurisano N, 1995, PLANT CELL PHYSIOL, V36, P1525
[5]  
BAUM G, 1993, J BIOL CHEM, V268, P19610
[6]   Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants [J].
Baum, G ;
LevYadun, S ;
Fridmann, Y ;
Arazi, T ;
Katsnelson, H ;
Zik, M ;
Fromm, H .
EMBO JOURNAL, 1996, 15 (12) :2988-2996
[7]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[8]  
Beeckman T., 1994, Plant Molecular Biology Reporter, V12, P37, DOI 10.1007/BF02668662
[9]   SEPARATION AND ESTIMATION OF AMINO ACIDS IN CRUDE PLANT EXTRACTS BY THIN-LAYER ELECTROPHORESIS AND CHROMATOGRAPHY [J].
BIELESKI, RL ;
TURNER, NA .
ANALYTICAL BIOCHEMISTRY, 1966, 17 (02) :278-&
[10]   Extensive duplication and reshuffling in the arabidopsis genome [J].
Blanc, G ;
Barakat, A ;
Guyot, R ;
Cooke, R ;
Delseny, I .
PLANT CELL, 2000, 12 (07) :1093-1101