Frank's constant in the hexatic phase

被引:98
作者
Keim, P. [1 ]
Maret, G.
von Gruenberg, H. H.
机构
[1] Graz Univ, A-8010 Graz, Austria
[2] Univ Konstanz, D-78457 Constance, Germany
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 03期
关键词
D O I
10.1103/PhysRevE.75.031402
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using videomicroscopy data of a two-dimensional colloidal system the bond-order correlation function G(6) is calculated and used to determine both the orientational correlation length xi(6) in the liquid phase and the modulus of orientational stiffness, Frank's constant F-A, in the hexatic phase. The latter is an anisotropic fluid phase between the crystalline and the isotropic liquid phase. F-A is found to be finite within the hexatic phase, takes the value 72/pi at the hexatic <-> isotropic liquid phase transition, and diverges at the hexatic <-> crystal transition as predicted by the Kosterlitz-Thouless-Halperin-Nelson-Young theory. This is a quantitative test of the mechanism of breaking the orientational symmetry by disclination unbinding.
引用
收藏
页数:6
相关论文
共 31 条
[1]   Two-dimensional melting transition observed in a block copolymer [J].
Angelescu, DE ;
Harrison, CK ;
Trawick, ML ;
Register, RA ;
Chaikin, PM .
PHYSICAL REVIEW LETTERS, 2005, 95 (02)
[2]  
[Anonymous], ADV CHEM PHYS, DOI DOI 10.1002/9780470141410.CH7
[3]   MELTING IN 2-DIMENSIONAL LENNARD-JONES SYSTEMS - OBSERVATION OF A METASTABLE HEXATIC PHASE [J].
CHEN, K ;
KAPLAN, T ;
MOSTOLLER, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4019-4022
[4]   GRAIN-BOUNDARY THEORY OF MELTING IN 2 DIMENSIONS [J].
CHUI, ST .
PHYSICAL REVIEW B, 1983, 28 (01) :178-194
[5]   1ST-ORDER AND CONTINUOUS MELTING IN A 2-DIMENSIONAL SYSTEM - MONOLAYER XENON ON GRAPHITE [J].
DIMON, P ;
HORN, PM ;
SUTTON, M ;
BIRGENEAU, RJ ;
MONCTON, DE .
PHYSICAL REVIEW B, 1985, 31 (01) :437-447
[6]   THEORY OF 2-DIMENSIONAL MELTING [J].
HALPERIN, BI ;
NELSON, DR .
PHYSICAL REVIEW LETTERS, 1978, 41 (02) :121-124
[7]   Computer simulations of the two-dimensional melting transition using hard disks [J].
Jaster, A .
PHYSICAL REVIEW E, 1999, 59 (03) :2594-2602
[8]   Harmonic lattice behavior of two-dimensional colloidal crystals -: art. no. 215504 [J].
Keim, P ;
Maret, G ;
Herz, U ;
von Grünberg, HH .
PHYSICAL REVIEW LETTERS, 2004, 92 (21) :215504-1
[9]   DISCLINATIONS AND 1ST ORDER TRANSITIONS IN 2D MELTING [J].
KLEINERT, H .
PHYSICS LETTERS A, 1983, 95 (07) :381-384
[10]   ORDERING, METASTABILITY AND PHASE-TRANSITIONS IN 2 DIMENSIONAL SYSTEMS [J].
Kosterlitz, JM ;
Thouless, DJ .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (07) :1181-1203