Coordinated morphogenetic cell movements during gastrulation are crucial for establishing embryonic axes in animals. Most recently, the non-canonical Wnt signaling cascade (PCP pathway) has been shown to regulate convergent extension movements in Xenopus and zebrafish. Heparan sulfate proteoglycans; (HSPGs) are known as modulators of intercellular signaling, and are required for gastrulation movements in vertebrates. However, the function of HSPGs is poorly understood. We analyze the function of Xenopus glypican 4 (Xgly4), which is a member of membrane-associated HSPG family. In situ hybridization revealed that Xgly4 is expressed in the dorsal mesoderm and ectoderm during gastrulation. Reducing the levels of Xgly4 inhibits cell-membrane accumulation of Dishevelled (Dsh), which is a transducer of the Wnt signaling cascade, and thereby disturbs cell movements during gastrulation. Rescue analysis with different Dsh mutants and Wnt11 demonstrated that Xgly4 functions in the non-canonical Wnt/PCP pathway, but not in the canonical Wnt/beta-catenin pathway, to regulate gastrulation movements. We also provide evidence that the Xgly4 protein physically binds Wnt ligands. Therefore, our results suggest that Xgly4 functions as positive regulator in non-canonical Wnt/PCP signaling during gastrulation.