Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria

被引:88
作者
Oh, Jonghee
Kim, Jung-Gun
Jeon, Eunkyung
Yoo, Chang-Hyuk
Moon, Jae Sun
Rhee, Sangkee
Hwang, Ingyu [1 ]
机构
[1] Seoul Natl Univ, Dept Agr Biotechnol, Seoul 151921, South Korea
[2] Seoul Natl Univ, Ctr Agr Biomat, Seoul 151921, South Korea
[3] Korea Res Biosci & Biotechnol, Plant Genome Res Ctr, Taejon 305633, South Korea
关键词
D O I
10.1074/jbc.M602576200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Harpins are heat-stable, glycine-rich type III-secreted proteins produced by plant pathogenic bacteria, which cause a hypersensitive response (HR) when infiltrated into the intercellular space of tobacco leaves; however, the biochemical mechanisms by which harpins cause plant cell death remain unclear. In this study, we determined the biochemical characteristics of HpaG, the first harpin identified from a Xanthomonas species, under plant apoplast-like conditions using electron microscopy and circular dichroism spectroscopy. We found that His(6)-HpaG formed biologically active spherical oligomers, protofibrils, and beta-sheet-rich fibrils, whereas the null HR mutant His(6)HpaG(L50P) did not. Biochemical analysis and HR assay of various forms of HpaG demonstrated that the transition from an beta-helix to beta-sheet-rich fibrils is important for the biological activity of protein. The fibrillar form of His(6)-HpaG is an amyloid protein based on positive staining with Congo red to produce green birefringence under polarized light, increased protease resistance, and beta-sheet fibril structure. Other harpins, such as HrpN from Erwinia amylovora and HrpZ from Pseudomonas syringae pv. syringae, also formed curvilinear protofibrils or fibrils under plant apoplast-like conditions, suggesting that amyloidogenesis is a common feature of harpins. Missense and deletion mutagenesis of HpaG indicated that the rate of HpaG fibril formation is modulated by a motif present in the C terminus. The plant cytotoxicity of HpaG is unique among the amyloid-forming proteins that occur in several microorganisms. Structural and morphological analogies between HpaG and disease-related amyloidogenic proteins, such as A beta protein, suggest possible common biochemical characteristics in the induction of plant and animal cell death.
引用
收藏
页码:13601 / 13609
页数:9
相关论文
共 49 条
[1]   Biological activity of harpin produced by Pantoea stewartii subsp stewartii [J].
Ahmad, M ;
Majerczak, DR ;
Pike, S ;
Hoyos, ME ;
Novacky, A ;
Coplin, DL .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (10) :1223-1234
[2]   Analysis of the role of the Pseudomonas syringae pv syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally non-polar hrpZ deletion mutations, truncated HrpZ fragments, and hrmA mutations [J].
Alfano, JR ;
Bauer, DW ;
Milos, TM ;
Collmer, A .
MOLECULAR MICROBIOLOGY, 1996, 19 (04) :715-728
[3]   Type III secretion system effector proteins: Double agents in bacterial disease and plant defense [J].
Alfano, JR ;
Collmer, A .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2004, 42 :385-414
[4]   POPA1, A PROTEIN WHICH INDUCES A HYPERSENSITIVITY-LIKE RESPONSE ON SPECIFIC PETUNIA GENOTYPES, IS SECRETED VIA THE HRP PATHWAY OF PSEUDOMONAS-SOLANACEARUM [J].
ARLAT, M ;
VANGIJSEGEM, F ;
HUET, JC ;
PERNOLLET, JC ;
BOUCHER, CA .
EMBO JOURNAL, 1994, 13 (03) :543-553
[5]   IMPROVED METHOD FOR PCR-MEDIATED SITE-DIRECTED MUTAGENESIS [J].
BARETTINO, D ;
FEIGENBUTZ, M ;
VALCARCEL, R ;
STUNNENBERG, HG .
NUCLEIC ACIDS RESEARCH, 1994, 22 (03) :541-542
[6]   SOLUTION CONFORMATIONS AND AGGREGATIONAL PROPERTIES OF SYNTHETIC AMYLOID BETA-PEPTIDES OF ALZHEIMERS-DISEASE - ANALYSIS OF CIRCULAR-DICHROISM SPECTRA [J].
BARROW, CJ ;
YASUDA, A ;
KENNY, PTM ;
ZAGORSKI, MG .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 225 (04) :1075-1093
[7]   ERWINIA-CHRYSANTHEMI HARPIN(ECH) - AN ELICITOR OF THE HYPERSENSITIVE RESPONSE THAT CONTRIBUTES TO SOFT-ROT PATHOGENESIS [J].
BAUER, DW ;
WEI, ZM ;
BEER, SV ;
COLLMER, A .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1995, 8 (04) :484-491
[8]   Amyloid formation modulates the biological activity of a bacterial protein [J].
Bieler, S ;
Estrada, L ;
Lagos, R ;
Baeza, M ;
Castilla, J ;
Soto, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (29) :26880-26885
[9]   Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders [J].
Caughey, B ;
Lansbury, PT .
ANNUAL REVIEW OF NEUROSCIENCE, 2003, 26 :267-298
[10]   Role of Escherichia coli curli operons in directing amyloid fiber formation [J].
Chapman, MR ;
Robinson, LS ;
Pinkner, JS ;
Roth, R ;
Heuser, J ;
Hammar, M ;
Normark, S ;
Hultgren, SJ .
SCIENCE, 2002, 295 (5556) :851-855