Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints

被引:34
作者
Asheim, Geir B.
Buchholz, Wolfgang
Hartwick, John M.
Mitra, Tapan
Withagen, Cees
机构
[1] Tilburg Univ, Dept Econ, NL-5000 LE Tilburg, Netherlands
[2] Univ Oslo, Dept Econ, N-0317 Oslo, Norway
[3] Univ Regensburg, Dept Econ, D-93040 Regensburg, Germany
[4] Queens Univ, Dept Econ, Kingston, ON K7L 3N6, Canada
[5] Cornell Univ, Dept Econ, Ithaca, NY 14853 USA
[6] Free Univ Amsterdam, Dept Econ, NL-1081 HV Amsterdam, Netherlands
关键词
quasi-arithmetic population growth; constant savings rates; exhaustible resources; sustainability;
D O I
10.1016/j.jeem.2006.09.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
In the Dasgupta-Heal-Solow-Stiglitz (DHSS) model of capital accumulation and resource depletion we show the following equivalence: if an efficient path has constant (gross and net of population growth) savings rates, then population growth must be quasi-arithmetic and the path is a maximin or a classical utilitarian optimum. Conversely, if a path is optimal according to maximin or classical utilitarianism (with constant elasticity of marginal utility) under quasi-arithmetic population growth, then the (gross and net of population growth) savings rates converge asymptotically to constants. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:213 / 229
页数:17
相关论文
共 27 条
[1]   A general approach to welfare measurement through national income accounting [J].
Asheim, GB ;
Buchholz, W .
SCANDINAVIAN JOURNAL OF ECONOMICS, 2004, 106 (02) :361-384
[2]   Green national accounting with a changing population [J].
Asheim, GB .
ECONOMIC THEORY, 2004, 23 (03) :601-619
[3]   The Hartwick rule: Myths and facts [J].
Asheim, GB ;
Buchholz, W ;
Withagen, C .
ENVIRONMENTAL & RESOURCE ECONOMICS, 2003, 25 (02) :129-150
[4]   Intertemporal equity and Hartwick's rule in an exhaustible resource model [J].
Buchholz, W ;
Dasgupta, S ;
Mitra, T .
SCANDINAVIAN JOURNAL OF ECONOMICS, 2005, 107 (03) :547-561
[5]  
DASGUPTA P, 1974, REV ECON STUD, P3
[6]  
Dasgupta P., 1979, EC THEORY EXHAUSTIBL
[7]   ON HARTWICKS RULE FOR REGULAR MAXIMIN PATHS OF CAPITAL ACCUMULATION AND RESOURCE DEPLETION [J].
DIXIT, A ;
HAMMOND, P ;
HOEL, M .
REVIEW OF ECONOMIC STUDIES, 1980, 47 (03) :551-556
[8]  
Dixit A, 1976, THEORY EQUILIBRIUM G
[9]  
GROTH C, 2006, 0606 U COP DEP EC
[10]   Investing exhaustible resource rents and the path of consumption [J].
Hamilton, K ;
Hartwick, JM .
CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 2005, 38 (02) :615-621