Instrumentation of the very forward region of a linear collider detector

被引:19
作者
Abramowicz, H [1 ]
Afanaciev, K
Denisov, S
Dollan, R
Drachenberg, D
Drugakov, V
Emeliantchik, I
Erin, S
Ingbir, R
Kananov, S
Kowal, A
Kouznetsova, E
Kwee, R
Lange, W
Levy, A
Lohmann, N
Lukasik, J
Luz, M
Miller, D
Minashvili, I
Nauenberg, U
Pawlik, B
Rusak-Ovich, N
Rybin, A
Shumeiko, N
Stahl, A
Suszycki, L
Suzdalev, K
Vrba, V
Wierba, W
Zachorowski, J
Zyazyulya, F
机构
[1] Tel Aviv Univ, IL-69978 Tel Aviv, Israel
[2] NC PHEP, Minsk, BELARUS
[3] Inst High Energy Phys, Protvino, Russia
[4] DESY, Zeuthen, Germany
[5] AGH Univ Sci & Technol, Krakow, Poland
[6] UCL, London, England
[7] Dubna Joint Nucl Res Inst, Dubna 141980, Russia
[8] Univ Colorado, Boulder, CO 80302 USA
[9] Inst Nucl Phys, Krakow, Poland
[10] Acad Sci Czech Republ, Inst Phys, Prague, Czech Republic
[11] Jagiellonian Univ, Krakow, Poland
关键词
beam diagnostics; linear collider detector; luminosity measurement; radiation hard calorimeters;
D O I
10.1109/TNS.2004.839097
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The very forward region of a detector at a linear e(+)e(-) collider is a particularly challenging area for instrumentation. In the TESLA detector, two calorimeters, BeamCal (Beam Calorimeter) and LumiCal (Luminosity Calorimeter) are planned. The BeamCal is positioned just adjacent to the beampipe. It will be hit by beamstrahlung remnants giving a deposition of several tens of TeV per bunch crossing. The distribution of this energy will be measured to assist in tuning the beams. Single high-energy electrons will be identified and measured. High-energy electron identification is particularly important to veto backgrounds to new particle searches. Several technological options for BeamCal are discussed. Monte Carlo simulations are presented for a diamond/tungsten sandwich structure and compared to results obtained for a heavy element crystal calorimeter. First, tests of sensors are described. The LumiCal will measure larger polar angles than the BeamCal. It will provide a high-precision (0(10(-4))) luminosity measurement from Bhabha scattering. Monte Carlo simulations to optimize the shape and the structure of the calorimeter are presented.
引用
收藏
页码:2983 / 2989
页数:7
相关论文
共 14 条
[1]  
Abbiendi G, 2000, EUR PHYS J C, V14, P373, DOI 10.1007/s100520000353
[2]  
ARAUJO HM, LEAD TUNGSTATE DETEC
[3]  
AWES TC, 1977, NUCL INSTRUM METH A, V311, P130
[4]   SICAL - A HIGH-PRECISION SILICON-TUNGSTEN LUMINOSITY CALORIMETER FOR ALEPH [J].
BEDEREDE, D ;
BEUVILLE, E ;
BLOCHDEVAUX, B ;
GOSSET, L ;
JOUDON, A ;
LANCON, E ;
PASCUAL, J ;
PERLAS, J ;
PEYAUD, B ;
RANDER, J ;
RENARDY, JF ;
SCHULLER, JP ;
VALLAGE, B ;
BENETTA, R ;
BOUDREAU, J ;
GRIFFITHS, J ;
GRABIT, R ;
JARRON, P ;
LOFSTEDT, B ;
MIQUEL, R ;
SANTIARD, JC ;
STEFANINI, G ;
WAHL, H ;
AVANZINI, C ;
CERRI, C ;
FANTECHI, R ;
LORENZINI, R ;
MARTIN, EB ;
PIERAZZINI, G ;
VALASSI, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1995, 365 (01) :117-134
[5]  
Behnke T, 2003, NUCL PHYS B-PROC SUP, V125, P263, DOI 10.1016/S0920-5632(03)02255-2
[6]  
BEHNKE T, 2002, BRAHMS VERSION 305 M
[7]   A gas ionization electromagnetic calorimeter filled with C3F8 [J].
Bezzubov, V ;
Denisov, S ;
Erin, S ;
Ferapontov, A ;
Gilitsky, Y ;
Korablev, V ;
Kurchaninov, L ;
Lobanov, M ;
Rybin, A ;
Solin, A ;
Suzdalev, V ;
Tikhonov, V .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 494 (1-3) :369-372
[8]  
BRUN R, 1984, GEANT3
[9]  
GLUZA J, 2004, CONTRIBUTIONS 2 LOOP
[10]   Upgrade of the Monte Carlo program BHLUMI for Bhabha scattering at low angles to version 4.04 [J].
Jadach, S ;
Placzek, W ;
RichterWas, E ;
Ward, BFL ;
Was, Z .
COMPUTER PHYSICS COMMUNICATIONS, 1997, 102 (1-3) :229-251