Improved perfusion after subcritical ischemia in muscle flaps treated with vascular endothelial growth factor

被引:38
作者
Banbury, J [1 ]
Siemionow, M [1 ]
Porvasnik, S [1 ]
Petras, S [1 ]
Browne, E [1 ]
机构
[1] Cleveland Clin Fdn, Dept Plast & Reconstruct Surg, Cleveland, OH 44195 USA
关键词
D O I
10.1097/00006534-200012000-00015
中图分类号
R61 [外科手术学];
学科分类号
摘要
Vascular endothelial growth factor (VEGF), a potent endothelial mitogen, is secreted in ischemic tissue and plays a pivotal role in angiogenesis. We studied whether VEGF administered to a rat muscle flap at the time of ischemia induction would increase microcirculatory flow to the flap. The cremaster muscle flap was isolated on its neurovascular pedicle. Ischemia was induced by clamping the vascular pedicle, and 0.2 ml of either VEGF (0.1 mug) or vehicle (phosphate-buffered saline) was immediately infused into the muscle. After 4 or 6 hours, the clamps were released, and the cremaster was placed in a pocket in the medial thigh for 24 hours. The muscle was then dissected, and microcirculatory measurements were made under intravital microscopy. Six animals were used in each of the four groups. All flaps exposed to 6 hours of ischemia, the duration considered to be critical ischemia, had no significant microcirculatory flow, regardless of treatment with VEGF. In the 4-hour ischemia group, or subcritical ischemia group, red blood cell velocity in arterioles was 14 mm/sec in muscles treated with VEGF and 9 mm/sec in controls (p = 0.02), and capillary flow was 17 per high-power field in muscles treated with VEGF versus 2 per high-power field in controls (p = 0.0005). Thus, VEGF did not alter microcirculatory flow in a muscle flap exposed to critical ischemia, but it did enhance flow to a flap exposed to subcritical ischemia.
引用
收藏
页码:1541 / 1546
页数:6
相关论文
共 24 条
[1]   VASCULAR ISOLATION OF THE RAT CREMASTER MUSCLE [J].
ANDERSON, GL ;
ACLAND, RD ;
SIEMIONOW, M ;
MCCABE, SJ .
MICROVASCULAR RESEARCH, 1988, 36 (01) :56-63
[2]   UP-REGULATION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR EXPRESSION INDUCED BY MYOCARDIAL-ISCHEMIA - IMPLICATIONS FOR CORONARY ANGIOGENESIS [J].
BANAI, S ;
SHWEIKI, D ;
PINSON, A ;
CHANDRA, M ;
LAZAROVICI, G ;
KESHET, E .
CARDIOVASCULAR RESEARCH, 1994, 28 (08) :1176-1179
[3]  
BANAI S, 1994, CIRCULATION, V89, P183
[4]   SITE-SPECIFIC THERAPEUTIC ANGIOGENESIS AFTER SYSTEMIC ADMINISTRATION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR [J].
BAUTERS, C ;
ASAHARA, T ;
ZHENG, LP ;
TAKESHITA, S ;
BUNTING, S ;
FERRARA, N ;
SYMES, JF ;
ISNER, JM .
JOURNAL OF VASCULAR SURGERY, 1995, 21 (02) :314-325
[5]   PHYSIOLOGICAL ASSESSMENT OF AUGMENTED VASCULARITY INDUCED BY VEGF IN ISCHEMIC RABBIT HINDLIMB [J].
BAUTERS, C ;
ASAHARA, T ;
ZHENG, LP ;
TAKESHITA, S ;
BUNTING, S ;
FERRARA, N ;
SYMES, JF ;
ISNER, JM .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1994, 267 (04) :H1263-H1271
[6]   VASCULAR-PERMEABILITY FACTOR - A TUMOR-DERIVED POLYPEPTIDE THAT INDUCES ENDOTHELIAL-CELL AND MONOCYTE PROCOAGULANT ACTIVITY, AND PROMOTES MONOCYTE MIGRATION [J].
CLAUSS, M ;
GERLACH, M ;
GERLACH, H ;
BRETT, J ;
WANG, F ;
FAMILLETTI, PC ;
PAN, YCE ;
OLANDER, JV ;
CONNOLLY, DT ;
STERN, D .
JOURNAL OF EXPERIMENTAL MEDICINE, 1990, 172 (06) :1535-1545
[7]   TUMOR VASCULAR-PERMEABILITY FACTOR STIMULATES ENDOTHELIAL-CELL GROWTH AND ANGIOGENESIS [J].
CONNOLLY, DT ;
HEUVELMAN, DM ;
NELSON, R ;
OLANDER, JV ;
EPPLEY, BL ;
DELFINO, JJ ;
SIEGEL, NR ;
LEIMGRUBER, RM ;
FEDER, J .
JOURNAL OF CLINICAL INVESTIGATION, 1989, 84 (05) :1470-1478
[8]  
DVORAK HF, 1995, AM J PATHOL, V146, P1029
[9]   MOLECULAR AND BIOLOGICAL PROPERTIES OF THE VASCULAR ENDOTHELIAL GROWTH-FACTOR FAMILY OF PROTEINS [J].
FERRARA, N ;
HOUCK, K ;
JAKEMAN, L ;
LEUNG, DW .
ENDOCRINE REVIEWS, 1992, 13 (01) :18-32
[10]   ARTERIAL GENE-THERAPY FOR THERAPEUTIC ANGIOGENESIS IN PATIENTS WITH PERIPHERAL ARTERY DISEASE [J].
ISNER, JM ;
WALSH, K ;
SYMES, J ;
PIECZEK, A ;
TAKESHITA, S ;
LOWRY, J ;
ROSSOW, S ;
ROSENFIELD, K ;
WEIR, L ;
BROGI, E ;
SCHAINFELD, R .
CIRCULATION, 1995, 91 (11) :2687-2692