Relationship between stability of folding intermediates and amyloid formation for the yeast prion Ure2p: A quantitative analysis of the effects of pH and buffer system

被引:79
作者
Zhu, L [1 ]
Zhang, XJ [1 ]
Wang, LY [1 ]
Zhou, JM [1 ]
Perrett, S [1 ]
机构
[1] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
dissociation; first order kinetics; nucleation; protein folding; protein stability;
D O I
10.1016/S0022-2836(03)00249-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The dimeric yeast protein Ure2 shows prion-like behaviour in vivo and forms amyloid fibrils in vitro. A dimeric intermediate is populated transiently during refolding and is apparently stabilized at lower pH, conditions suggested to favour Ure2 fibril formation. Here we present a quantitative analysis of the effect of pH on the thermodynamic stability of Ure2 in Tris and phosphate buffers over a 100-fold protein concentration range. We find that equilibrium denaturation is best described by a three-state model via a dimeric intermediate, even under conditions where the transition appears two-state by multiple structural probes. The free energy for complete unfolding and dissociation of Ure2 is up to 50 kcal mol(-1). Of this, at least 20 kcal mol(-1) is contributed by inter-subunit interactions. Hence the native dimer and dimeric intermediate are significantly more stable than either of their monomeric counterparts. The previously observed kinetic unfolding intermediate is suggested to represent the dissociated native-like monomer. The native state is stabilized with respect to the dimeric intermediate at higher pH and in Tris buffer, without significantly affecting the dissociation equilibrium. The effects of pH, buffer, protein concentration and temperature on the kinetics of amyl oid formation were quantified by monitoring thioflavin T fluorescence. The lag time decreases with increasing protein concentration and fibril formation shows pseudo-first order kinetics, consistent with a nucleated assembly mechanism. In Tris buffer the lag time is increased, suggesting that stabilization of the native state disfavours amyloid nucleation. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:235 / 254
页数:20
相关论文
共 49 条
[1]   Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein [J].
Baxa, U ;
Speransky, V ;
Steven, AC ;
Wickner, RB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5253-5260
[2]   Crystal structures of the yeast prion Ure2p functional region in complex with glutathione and related compounds [J].
Bousset, L ;
Belrhali, H ;
Melki, R ;
Morera, S .
BIOCHEMISTRY, 2001, 40 (45) :13564-13573
[3]   The yeast prion Ure2p retains its native α-helical conformation upon assembly into protein fibrils in vitro [J].
Bousset, L ;
Thomson, NH ;
Radford, SE ;
Melki, R .
EMBO JOURNAL, 2002, 21 (12) :2903-2911
[4]   Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae [J].
Bousset, L ;
Belrhali, H ;
Janin, J ;
Melki, R ;
Morera, S .
STRUCTURE, 2001, 9 (01) :39-46
[5]   EQUILIBRIUM DISSOCIATION AND UNFOLDING OF THE ARC REPRESSOR DIMER [J].
BOWIE, JU ;
SAUER, RT .
BIOCHEMISTRY, 1989, 28 (18) :7139-7143
[6]  
CLARK AC, 1993, J BIOL CHEM, V268, P10773
[7]   ENGINEERED DISULFIDE BONDS AS PROBES OF THE FOLDING PATHWAY OF BARNASE - INCREASING THE STABILITY OF PROTEINS AGAINST THE RATE OF DENATURATION [J].
CLARKE, J ;
FERSHT, AR .
BIOCHEMISTRY, 1993, 32 (16) :4322-4329
[8]   THE URE2 GENE-PRODUCT OF SACCHAROMYCES-CEREVISIAE PLAYS AN IMPORTANT ROLE IN THE CELLULAR-RESPONSE TO THE NITROGEN-SOURCE AND HAS HOMOLOGY TO GLUTATHIONE S-TRANSFERASES [J].
COSCHIGANO, PW ;
MAGASANIK, B .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (02) :822-832
[9]  
Fersht A. R., 1998, STRUCTURE MECH PROTE
[10]   Folding of the yeast prion protein Ure2: Kinetic evidence for folding and unfolding intermediates [J].
Galani, D ;
Fersht, AR ;
Perrett, S .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 315 (02) :213-227