Ionization layer at the edge of a fully ionized plasma

被引:52
作者
Benilov, MS
Naidis, GV
机构
[1] Univ Madeira, Dept Fis, P-9000 Funchal, Portugal
[2] Russian Acad Sci, Inst High Temp, Moscow 127412, Russia
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 02期
关键词
D O I
10.1103/PhysRevE.57.2230
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A model is developed of the ionization layer which separates a thermal plasma close to full ionization from the space-charge sheath adjacent to the surface of an electrode or of an insulating wall. The multifluid description of the plasma is used. Asymptotic solutions are obtained for the cases in which the thickness of the ionization layer is much larger or much smaller than the mean free path for ion-atom collisions. The solution obtained for the latter case describes an interesting new regime which is in some aspects similar to the conventional diffusion regime, though essentially different from the diffusion regime in other aspects. Formulas are derived for the ion flux coming from the ionization layer to the edge of the space-charge sheath. Application of results to atmospheric-pressure argon and mercury plasmas is considered.
引用
收藏
页码:2230 / 2241
页数:12
相关论文
共 43 条
[1]   Analysis of thermal non-equilibrium in the near-cathode region of atmospheric-pressure arcs [J].
Benilov, MS .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1997, 30 (24) :3353-3359
[2]   A MODEL OF THE CATHODE REGION OF ATMOSPHERIC-PRESSURE ARCS [J].
BENILOV, MS ;
MAROTTA, A .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1995, 28 (09) :1869-1882
[3]   THE ION FLUX FROM A THERMAL PLASMA TO A SURFACE [J].
BENILOV, MS .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1995, 28 (02) :286-294
[4]  
Biberman L. M., 1987, KINETICS NONEQUILIBR
[5]   KINETICS OF COLLISIONAL-RADIATION RECOMBINATION AND IONIZATION IN LOW-TEMPERATURE PLASMA [J].
BIBERMAN, LM ;
YAKUBOV, IT ;
VOROBEV, VS .
PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1971, 59 (04) :555-+
[6]   COLLISION-DOMINATED POSITIVE COLUMN OF A WEAKLY IONIZED GAS [J].
BLANK, JL .
PHYSICS OF FLUIDS, 1968, 11 (08) :1686-&
[7]  
Chapman S., 1991, The Mathematical Theory of Non-Uniform Gases
[9]  
Cole J.D., 1968, Perturbation Methods in Applied Mathematics
[10]  
DELALONDRE C, 1990, C PHYSIQUE, V51, P199