CYP2C8 Genotype Significantly Alters Imatinib Metabolism in Chronic Myeloid Leukaemia Patients

被引:25
作者
Barratt, Daniel T. [1 ,2 ]
Cox, Hannah K. [1 ]
Menelaou, Andrew [3 ]
Yeung, David T. [3 ,4 ,5 ]
White, Deborah L. [3 ,5 ]
Hughes, Timothy P. [3 ,4 ,5 ]
Somogyi, Andrew A. [1 ,2 ,6 ]
机构
[1] Univ Adelaide, Adelaide Med Sch, Discipline Pharmacol, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Ctr Personalised Canc Med, Adelaide, SA, Australia
[3] SAHMRI, Adelaide, SA, Australia
[4] SA Pathol, Dept Haematol, Adelaide, SA, Australia
[5] Univ Adelaide, Adelaide Med Sch, Adelaide, SA, Australia
[6] Royal Adelaide Hosp, Dept Clin Pharmacol, Adelaide, SA, Australia
关键词
TYROSINE KINASE INHIBITORS; POPULATION PHARMACOKINETICS; TRANSPORTER POLYMORPHISMS; CLINICAL PHARMACOKINETICS; GENETIC POLYMORPHISMS; N-DEMETHYLATION; P-GLYCOPROTEIN; IN-VITRO; CYP3A4; ABCB1;
D O I
10.1007/s40262-016-0494-0
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Objective The aims of this study were to determine the effects of the CYP2C8*3 and *4 polymorphisms on imatinib metabolism and plasma imatinib concentrations in chronic myeloid leukaemia (CML) patients. Methods We genotyped 210 CML patients from the TIDELII trial receiving imatinib 400-800 mg/day for CYP2C8*3 (rs11572080, rs10509681) and *4 (rs1058930). Steady-state trough total plasma N-desmethyl imatinib (major metabolite):imatinib concentration ratios (metabolic ratios) and trough total plasma imatinib concentrations were compared between genotypes (one-way ANOVA with Tukey post hoc). Results CYP2C8*3 (n = 34) and *4 (n = 15) carriers had significantly higher (P < 0.01) and lower (P < 0.01) metabolic ratios, respectively, than CYP2C8*1/*1 (n = 147) patients (median +/- standard deviation: 0.28 +/- A 0.08, 0.18 +/- A 0.06 and 0.22 +/- A 0.08, respectively). Plasma imatinib concentrations were consequently > 50% higher for CYP2C8*1/*4 than for CYP2C8*1/*1 and CYP2C8*3 carriers (2.18 +/- 0.66 vs. 1.45 +/- 0.74 [P < 0.05] and 1.36 +/- 0.98 mu g/mL [P < 0.05], respectively). Conclusions CYP2C8 genotype significantly alters imatinib metabolism in patients through gain- and loss-of-function mechanisms.
引用
收藏
页码:977 / 985
页数:9
相关论文
共 49 条
[1]   An integrated map of genetic variation from 1,092 human genomes [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Schmidt, Jeanette P. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Dinh, Huyen ;
Kovar, Christie ;
Lee, Sandra ;
Lewis, Lora ;
Muzny, Donna ;
Reid, Jeff ;
Wang, Min ;
Wang, Jun ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Li, Zhuo ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Su, Zhe ;
Tai, Shuaishuai ;
Tang, Meifang .
NATURE, 2012, 491 (7422) :56-65
[2]  
[Anonymous], 2016, GLEEV NDA 021588 LAB
[3]  
[Anonymous], CLIN PHARM THER
[4]   CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6α-hydroxylase activity in human liver microsomes [J].
Bahadur, N ;
Leathart, JBS ;
Mutch, E ;
Steimel-Crespi, D ;
Dunn, SA ;
Gilissen, R ;
Van Houdt, J ;
Hendrickx, J ;
Mannens, G ;
Bohets, H ;
Williams, FM ;
Armstrong, M ;
Crespi, CL ;
Daly, AK .
BIOCHEMICAL PHARMACOLOGY, 2002, 64 (11) :1579-1589
[5]   Intracellular concentration of the tyrosine kinase inhibitor imatinib in gastrointestinal stromal tumor cells [J].
Berglund, Erik ;
Ubhayasekera, Sarojini Jayantha Kumari A. ;
Karlsson, Fredrik ;
Akcakaya, Pinar ;
Aluthgedara, Warunika ;
Ahlen, Jan ;
Frobom, Robin ;
Nilsson, Inga-Lena ;
Lui, Weng-Onn ;
Larsson, Catharina ;
Zedenius, Jan ;
Bergquist, Jonas ;
Branstrom, Robert .
ANTI-CANCER DRUGS, 2014, 25 (04) :415-422
[6]   Therapeutic drug monitoring of imatinib in chronic myeloid leukemia: experience from 1216 patients at a centralized laboratory [J].
Bouchet, Stephane ;
Titier, Karine ;
Moore, Nicholas ;
Lassalle, Regis ;
Ambrosino, Basmah ;
Poulette, Sylvie ;
Schuld, Peter ;
Belanger, Coralie ;
Mahon, Francois-Xavier ;
Molimard, Mathieu .
FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2013, 27 (06) :690-697
[7]   Individualized dosing of tyrosine kinase inhibitors: are we there yet? [J].
de Wit, Djoeke ;
Guchelaar, Henk-Jan ;
den Hartigh, Jan ;
Gelderblom, Hans ;
van Erp, Nielka P. .
DRUG DISCOVERY TODAY, 2015, 20 (01) :18-36
[8]   Clinical Pharmacokinetics of Tyrosine Kinase Inhibitors Focus on Pyrimidines, Pyridines and Pyrroles [J].
Di Gion, Paola ;
Kanefendt, Friederike ;
Lindauer, Andreas ;
Scheffler, Matthias ;
Doroshyenko, Oxana ;
Fuhr, Uwe ;
Wolf, Juergen ;
Jaehde, Ulrich .
CLINICAL PHARMACOKINETICS, 2011, 50 (09) :551-603
[9]   The c.480C &gt; G polymorphism of hOCT1 influences imatinib clearance in patients affected by chronic myeloid leukemia [J].
Di Paolo, A. ;
Polillo, M. ;
Capecchi, M. ;
Cervetti, G. ;
Barate, C. ;
Angelini, S. ;
Guerrini, F. ;
Fontanelli, G. ;
Arici, R. ;
Ciabatti, E. ;
Grassi, S. ;
Bocci, G. ;
Hrelia, P. ;
Danesi, R. ;
Petrini, M. ;
Galimberti, S. .
PHARMACOGENOMICS JOURNAL, 2014, 14 (04) :328-335
[10]   Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates [J].
Filppula, A. M. ;
Laitila, J. ;
Neuvonen, P. J. ;
Backman, J. T. .
BRITISH JOURNAL OF PHARMACOLOGY, 2012, 165 (08) :2787-2798