Effects of the α2-adrenoreceptor antagonist dexefaroxan on neurogenesis in the olfactory bulb of the adult rat in vivo:: Selective protection against neuronal death

被引:47
作者
Bauer, S
Moyse, E
Jourdan, F
Colpaert, F
Martel, JC
Marien, M
机构
[1] Univ Lyon 1, CNRS, UMR 5020, Lab Neurosci & Syst Sensoriels, F-69622 Villeurbanne, France
[2] Ctr Rech Pierre Fabre, F-81106 Castres, France
关键词
neuroplasticity; neuroprotection; noradrenaline; rostral migratory stream; neural progenitor cells; stem cells;
D O I
10.1016/S0306-4522(02)00757-1
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A dysfunction of noradrenergic mechanisms originating in the locus coeruleus has been hypothesised to be the critical factor underlying the evolution of central neurodegenerative diseases [Colpaert FC (1994) Noradrenergic mechanism Parkinson's disease: a theory. In: Noradrenergic mechanisms in Parkinson's disease (Briley M, Marian M, ads) pp 225-254. Boca Raton, FL, USA: CRC Press Inc.]. alpha(2)-Adrenoceptor antagonists, presumably in part by facilitating central noradrenergic transmission, afford neuroprotection in vivo in models of cerebral ischaemia, excitotoxicity and devascularization-induced neurodegeneration. The present study utilised the rat olfactory bulb as a model system for examining the effects of the selective alpha(2)-adrenoceptor antagonist dexefaroxan upon determinants of neurogenesis (proliferation, survival and death) in the adult brain in vivo. Cell proliferation (5-bromo-2'-deoxyuridine labelling) and cell death associated with DNA fragmentation (terminal dideoxynucleotidyl transferase-catalysed 2'-deoxyuridine-5'-triphosphate nick end-labelling assay) were quantified following a 7-day treatment with either vehicle or dexefaroxan (0.63 mg/kg i.p., three times daily), followed by a 3-day washout period. The number of terminal dideoxynucleotidyl transferase-catalysed 2'-deoxyuridine-5'-triphosphate nick end-labelling-positive nuclei in the olfactory bulb was lower in dexefaroxan-treated rats, this difference being greatest and significant in the subependymal layer (-52%). In contrast, 5-bromo-2'-deoxyuridine-immunoreactive nuclei were more numerous (+68%) in the bulbs of dexefaroxan-treated rats whilst no differences were detected in the proliferating region of the subventricular zone. Terminal dideoxynucleotidyl transferase-catalysed 2'-deoxyuridine-5'-triphosphate nick end-labelling combination with glial fibrillary acidic protein or neuronal-specific antigen immunohistochemistry revealed that terminal dideoxynucleotidyl transferase-catalysed 2'-deoxyuridine-5'-triphosphate nick end-labelling-positive nuclei were associated primarily with a neuronal cell phenotype. These findings suggest that dexefaroxan increases neuron survival in the olfactory bulb of the adult rat in vivo, putatively as a result of reducing the apoptotic fate of telencephalic stem cell progenies. (C) 2003 IBRO. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:281 / 291
页数:11
相关论文
共 72 条
[1]  
Aloyz R, 1999, LEARN MEMORY, V6, P216
[2]   AUTORADIOGRAPHIC AND HISTOLOGICAL STUDIES OF POSTNATAL NEUROGENESIS .4. CELL PROLIFERATION AND MIGRATION IN ANTERIOR FOREBRAIN, WITH SPECIAL REFERENCE TO PERSISTING NEUROGENESIS IN OLFACTORY BULB [J].
ALTMAN, J .
JOURNAL OF COMPARATIVE NEUROLOGY, 1969, 137 (04) :433-&
[3]  
Bauer S, 2000, EUR J NEUROSCI, V12, P344
[4]   Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain [J].
Biebl, M ;
Cooper, CM ;
Winkler, J ;
Kuhn, HG .
NEUROSCIENCE LETTERS, 2000, 291 (01) :17-20
[5]   Neurobiology -: Self-repair in the brain [J].
Björklund, A ;
Lindvall, O .
NATURE, 2000, 405 (6789) :892-895
[6]   Changes in neurotransmitter release in the main olfactory bulb following an olfactory conditioning procedure in mice [J].
Brennan, PA ;
Schellinck, HM ;
De la Riva, C ;
Kendrick, KM ;
Keverne, EB .
NEUROSCIENCE, 1998, 87 (03) :583-590
[7]   Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats [J].
Brezun, JM ;
Daszuta, A .
NEUROSCIENCE, 1999, 89 (04) :999-1002
[8]   A cautionary note on the use of the TUNEL stain to determine apoptosis [J].
CharriautMarlangue, C ;
BenAri, Y .
NEUROREPORT, 1995, 7 (01) :61-64
[9]  
Chopin P, 1999, J PHARMACOL EXP THER, V288, P798
[10]   Norepinephrine increases rat mitral cell excitatory responses to weak olfactory nerve input via alpha-1 receptors in vitro [J].
Ciombor, KJ ;
Ennis, M ;
Shipley, MT .
NEUROSCIENCE, 1999, 90 (02) :595-606