How to prove that a preconditioner cannot be superlinear

被引:25
作者
Capizzano, SS
Tyrtyshnikov, E
机构
[1] Univ Insubria, Dipartimento Chim Fis & Matemat, Sede Como, I-22100 Como, Italy
[2] Russian Acad Sci, Inst Numer Math, Moscow 117333, Russia
关键词
D O I
10.1090/S0025-5718-03-01506-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the general case of multilevel Toeplitz matrices, we recently proved that any multilevel circulant preconditioner is not superlinear ( a cluster it may provide cannot be proper). The proof was based on the concept of quasi-equimodular matrices, although this concept does not apply, for example, to the sine-transform matrices. In this paper, with a new concept of partially equimodular matrices, we cover all trigonometric matrix algebras widely used in the literature. We propose a technique for proving the non-superlinearity of certain frequently used preconditioners for some representative sample multilevel matrices. At the same time, we show that these preconditioners are, in a certain sense, the best among the sublinear preconditioners ( with only a general cluster) for multilevel Toeplitz matrices.
引用
收藏
页码:1305 / 1316
页数:12
相关论文
共 27 条
[1]   ON THE RATE OF CONVERGENCE OF THE PRECONDITIONED CONJUGATE-GRADIENT METHOD [J].
AXELSSON, O ;
LINDSKOG, G .
NUMERISCHE MATHEMATIK, 1986, 48 (05) :499-523
[2]  
BINI D, 1983, LINEAR ALGEBRA APPL, V52-3, P99
[3]   ON A MATRIX ALGEBRA RELATED TO THE DISCRETE HARTLEY TRANSFORM [J].
BINI, D ;
FAVATI, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (02) :500-507
[4]   Korovkin theorems and linear positive Gram matrix algebra approximations of Toeplitz matrices [J].
Capizzano, SS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 284 (1-3) :307-334
[5]   Toeplitz preconditioners constructed from linear approximation processes [J].
Capizzano, SS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) :446-465
[6]  
Capizzano SS, 2002, LINEAR ALGEBRA APPL, V343, P303
[7]   Any circulant-like preconditioner for multilevel matrices is not superlinear [J].
Capizzano, SS ;
Tyrtyshnikov, E .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (02) :431-439
[8]   Conjugate gradient methods for toeplitz systems [J].
Chan, RH ;
Ng, MK .
SIAM REVIEW, 1996, 38 (03) :427-482
[9]   Multigrid method for ill-conditioned symmetric Toeplitz systems [J].
Chan, RH ;
Chang, QS ;
Sun, HW .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (02) :516-529
[10]  
Davis PJ., 1979, Circulant Matrices