Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing

被引:253
作者
Correa-Baena, Juan-Pablo [1 ]
Hippalgaonkar, Kedar [2 ]
van Duren, Jeroen [3 ]
Jaffer, Shaffiq [4 ]
Chandrasekhar, Vijay R. [5 ]
Stevanovic, Vladan [6 ]
Wadia, Cyrus [7 ]
Guha, Supratik [8 ,9 ]
Buonassisi, Tonio [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] ASTAR, IMRE, Innovis, Singapore, Singapore
[3] Intermol Inc, San Jose, CA 95134 USA
[4] TOTAL Amer Serv Inc, 82 South St, Hopkinton, MA 01748 USA
[5] ASTAR, Inst Infocomm Res I2R, 21-01 Connexis South Tower, Singapore, Singapore
[6] Colorado Sch Mines, Golden, CO 80401 USA
[7] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[8] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[9] Univ Chicago, Chicago, IL 60615 USA
关键词
ORGANIC PHOTOVOLTAICS; INORGANIC MATERIALS; HALIDE PEROVSKITES; DESIGN; SCIENCE; COMBINATORIAL; SEARCH; CELLS;
D O I
10.1016/j.joule.2018.05.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Successful materials innovations can transform society. However, materials research often involves long timelines and low success probabilities, dissuading investors who have expectations of shorter times from bench to business. A combination of emergent technologies could accelerate the pace of novel materials development by ten times or more, aligning the timelines of stakeholders (investors and researchers), markets, and the environment, while increasing return on investment. First, tool automation enables rapid experimental testing of candidate materials. Second, high-performance computing concentrates experimental bandwidth on promising compounds by predicting and inferring bulk, interface, and defect-related properties. Third, machine learning connects the former two, where experimental outputs automatically refine theory and help define next experiments. We describe state-of-the-art attempts to realize this vision and identify resource gaps. We posit that over the coming decade, this combination of tools will transform the way we perform materials research, with considerable first-mover advantages at stake.
引用
收藏
页码:1410 / 1420
页数:11
相关论文
共 47 条
[1]   Globus platform-as-a-service for collaborative science applications [J].
Ananthakrishnan, Rachana ;
Chard, Kyle ;
Foster, Ian ;
Tuecke, Steven .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (02) :290-305
[2]  
[Anonymous], 2017, Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models
[3]  
[Anonymous], 2018, 6 INT C LEARN REPR I
[4]  
Aspuru-Guzik A., 2018, MISSION INNOVATION I, V6
[5]   The Materials Data Facility: Data Services to Advance Materials Science Research [J].
Blaiszik, B. ;
Chard, K. ;
Pruyne, J. ;
Ananthakrishnan, R. ;
Tuecke, S. ;
Foster, I. .
JOM, 2016, 68 (08) :2045-2052
[6]   Rapid Photovoltaic Device Characterization through Bayesian Parameter Estimation [J].
Brandt, Riley E. ;
Kurchin, Rachel C. ;
Steinmann, Vera ;
Kitchaev, Daniil ;
Roat, Chris ;
Levcenco, Sergiu ;
Ceder, Gerbrand ;
Unold, Thomas ;
Buonassisi, Tonio .
JOULE, 2017, 1 (04) :843-856
[7]   Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites [J].
Brandt, Riley E. ;
Stevanovic, Vladan ;
Ginley, David S. ;
Buonassisi, Tonio .
MRS COMMUNICATIONS, 2015, 5 (02) :265-275
[8]   The Modern Research Data Portal: a design pattern for networked, data-invensive science [J].
Chard, Kyle ;
Dart, Eli ;
Foster, Ian ;
Shifflett, David ;
Tuecke, Steven ;
Williams, Jason .
PEERJ COMPUTER SCIENCE, 2018,
[9]   Design of a nickel-base superalloy using a neural network [J].
Conduit, B. D. ;
Jones, N. G. ;
Stone, H. J. ;
Conduit, G. J. .
MATERIALS & DESIGN, 2017, 131 :358-365
[10]   Ten-percent solar-to-fuel conversion with nonprecious materials [J].
Cox, Casandra R. ;
Lee, Jungwoo Z. ;
Nocera, Daniel G. ;
Buonassisi, Tonio .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (39) :14057-14061