Iron-dependent self assembly of recombinant yeast frataxin: Implications for Friedreich ataxia

被引:220
作者
Adamec, J
Rusnak, F
Owen, WG
Naylor, S
Benson, LM
Gacy, AM
Isaya, G
机构
[1] Mayo Clin & Mayo Fdn, Dept Pediat & Adolescent Med, Rochester, MN 55905 USA
[2] Mayo Clin & Mayo Fdn, Dept Biochem & Mol Biol, Rochester, MN 55905 USA
[3] Mayo Clin & Mayo Fdn, Dept Pharmacol, Rochester, MN 55905 USA
关键词
D O I
10.1086/303056
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Frataxin deficiency is the primary cause of Friedreich ataxia (FRDA), an autosomal recessive cardiodegenerative and neurodegenerative disease. Frataxin is a nuclear-encoded mitochondrial protein that is widely conserved among eukaryotes. Genetic inactivation of the yeast frataxin homologue (Yfh1p) results in mitochondrial iron accumulation and hypersensitivity to oxidative stress. Increased iron deposition and evidence of oxidative damage have also been observed in cardiac tissue and cultured fibroblasts from patients with FRDA. These findings indicate that frataxin is essential for mitochondrial iron homeostasis and protection from iron-induced formation of free radicals. The functional mechanism of frataxin, however, is still unknown. We have expressed the mature form of Yfh1p (mYfh1p) in Escherichia coli and have analyzed its function in vitro. Isolated mYfh1p is a soluble monomer (13,783 Da) that contains no iron and shows no significant tendency to self-associate. Aerobic addition of ferrous iron to mYfh1p results in assembly of regular spherical multimers with a molecular mass of similar to 1.1 MDa (megadaltons) and a diameter of 13 +/- 2 nm. Each multimer consists of similar to 60 subunits and can sequester >3,000 atoms of iron. Titration of mYfh1p with increasing iron concentrations supports a stepwise mechanism of multimer assembly. Sequential addition of an iron chelator and a reducing agent results in quantitative iron release with concomitant disassembly of the multimer, indicating that mYfh1p sequesters iron in an available form. In yeast mitochondria, native mYfh1p exists as monomer and a higher-order species with a molecular weight >600,000. After addition of Fe-55 to the medium, immunoprecipitates of this species contain >16 atoms of Fe-55 per molecule of mYfh1p. We propose that iron-dependent self-assembly of recombinant mYfh1p reflects a physiological role for frataxin in mitochondrial iron sequestration and bioavailability.
引用
收藏
页码:549 / 562
页数:14
相关论文
共 33 条
[1]   Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin [J].
Babcock, M ;
deSilva, D ;
Oaks, R ;
DavisKaplan, S ;
Jiralerspong, S ;
Montermini, L ;
Pandolfo, M ;
Kaplan, J .
SCIENCE, 1997, 276 (5319) :1709-1712
[2]   Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia [J].
Bradley, JL ;
Blake, JC ;
Chamberlain, S ;
Thomas, PK ;
Cooper, JM ;
Schapira, AHV .
HUMAN MOLECULAR GENETICS, 2000, 9 (02) :275-282
[3]   Yeast and human frataxin are processed to mature form in two sequential steps by the mitochondrial processing peptidase [J].
Branda, SS ;
Cavadini, P ;
Adamec, J ;
Kalousek, F ;
Taroni, F ;
Isaya, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22763-22769
[4]   Friedreich's ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion [J].
Campuzano, V ;
Montermini, L ;
Molto, MD ;
Pianese, L ;
Cossee, M ;
Cavalcanti, F ;
Monros, E ;
Rodius, F ;
Duclos, F ;
Monticelli, A ;
Zara, F ;
Canizares, J ;
Koutnikova, H ;
Bidichandani, SI ;
Gellera, C ;
Brice, A ;
Trouillas, P ;
DeMichele, G ;
Filla, A ;
DeFrutos, R ;
Palau, F ;
Patel, PI ;
DiDonato, S ;
Mandel, JL ;
Cocozza, S ;
Koenig, M ;
Pandolfo, M .
SCIENCE, 1996, 271 (5254) :1423-1427
[5]   Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes [J].
Campuzano, V ;
Montermini, L ;
Lutz, Y ;
Cova, L ;
Hindelang, C ;
Jiralerspong, S ;
Trottier, Y ;
Kish, SJ ;
Faucheux, B ;
Trouillas, P ;
Authier, FJ ;
Durr, A ;
Mandel, JL ;
Vescovi, A ;
Pandolfo, M ;
Koenig, M .
HUMAN MOLECULAR GENETICS, 1997, 6 (11) :1771-1780
[6]  
CHASTEEN ND, 1985, J BIOL CHEM, V260, P2926
[7]   CCC1 suppresses mitochondrial damage in the yeast model of Friedreich's ataxia by limiting mitochondrial iron accumulation [J].
Chen, OS ;
Kaplan, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (11) :7626-7632
[8]   Molecular mechanisms of iron uptake in eukaryotes [J].
DeSilva, DM ;
Askwith, CC ;
Kaplan, J .
PHYSIOLOGICAL REVIEWS, 1996, 76 (01) :31-47
[9]  
FENTON WA, 1996, ADV MOL CEL, V17, P163
[10]   Low iron concentration and aconitase deficiency in a yeast frataxin homologue deficient strain [J].
Foury, F .
FEBS LETTERS, 1999, 456 (02) :281-284