Therapeutic potential of natural compounds that regulate the activity of protein kinase C

被引:46
作者
Carter, CA
Kane, CJM
机构
[1] WinSwift Sci, Nat Therapeut Biol Div, Little Rock, AR 72223 USA
[2] Univ Arkansas Med Sci, Dept Neurobiol & Dev Sci, Little Rock, AR 72205 USA
关键词
antioxidants; retinoids; vitamin E; vitamin C; ethanol; cancer; diabetes; fetal alcohol syndrome;
D O I
10.2174/0929867043364090
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein kinase C (PKC) is a family of serine/threonine kinases that regulates a variety of cell functions including proliferation, gene expression, cell cycle, differentiation, cytoskeletal organization, cell migration, and apoptosis. The PKC signal transduction cascade coordinates complex physiological events including normal tissue function and repair. Disruption of the Cellular environment through genetic mutation, disease, injury, or exposure to pro-oxidants, alcohol. or other insults can induce pathological PKC activation. Aberrant PKC activation can lead to diseases of cellular dysregulation such as cancer and diabetes. Can aberrant activation of PKC be reversed? Even 25 years after the identification of PKC, therapeutic regulation of PKC activity remains an emerging field. Because the function of each isoform remains to be elucidated, isoform specific control of gene expression is a current challenge. Natural compounds are important regulators of PKC activity, with both preventive and therapeutic efficacy. Antioxidants including vitamin A (retinoids), vitamin C (ascorbic acid) and vitamin E (tocopherols) show promise for reversal of PKC activation. beta-carotcne and retinoids function as anticarcinogenic agents and antagonize the biological effects of pro-oxidants on PKC. Vitamin E reverses the deleterious effects of hyperglycemia and diabetes by down-regulating PKC activity. Antioxidants in red wine provide cardioprotective effects. However, alcohol consumption also induces oxidative stress and disrupts PKC and retinoid function in the fetus and the adult. This review examines modulation of PKC activity by natural compounds and pharmacologic analogues which can be used effectively to prevent or treat common diseases associated with aberrant activation of PKC.
引用
收藏
页码:2883 / 2902
页数:20
相关论文
共 322 条
[1]   Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes - Role of oxidants and protein kinase-C activation [J].
Abiko, T ;
Abiko, A ;
Clermont, AC ;
Shoelson, B ;
Horio, N ;
Takahashi, J ;
Adamis, AP ;
King, GL ;
Bursell, SE .
DIABETES, 2003, 52 (03) :829-837
[2]   THE MARCKS BROTHERS - A FAMILY OF PROTEIN-KINASE-C SUBSTRATES [J].
ADEREM, A .
CELL, 1992, 71 (05) :713-716
[3]  
AHN WS, 1993, P AM ASSOC CANC RES, V34, pA446
[4]   The potential role of PKC β in diabetic retinopathy and macular edema [J].
Aiello, LP .
SURVEY OF OPHTHALMOLOGY, 2002, 47 :S263-S269
[5]   A retinoic acid receptor antagonist suppresses brain retinoic acid receptor overexpression and reverses a working memory deficit induced by chronic ethanol consumption in mice [J].
Alfos, S ;
Boucheron, C ;
Pallet, W ;
Higueret, D ;
Enderlin, V ;
Béracochéa, D ;
Jaffard, R ;
Higueret, P .
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2001, 25 (10) :1506-1514
[6]   The promise of retinoids to fight against cancer [J].
Altucci, L ;
Gronemeyer, H .
NATURE REVIEWS CANCER, 2001, 1 (03) :181-193
[7]   THE ROLE OF JUN, FOS AND THE AP-1 COMPLEX IN CELL-PROLIFERATION AND TRANSFORMATION [J].
ANGEL, P ;
KARIN, M .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1072 (2-3) :129-157
[8]   Curcumin is an in vivo inhibitor of angiogenesis [J].
Arbiser, JL ;
Klauber, N ;
Rohan, R ;
van Leeuwen, R ;
Huang, MT ;
Fisher, C ;
Flynn, E ;
Byers, HR .
MOLECULAR MEDICINE, 1998, 4 (06) :376-383
[9]   ENVIRONMENTAL FACTORS AND CANCER INCIDENCE AND MORTALITY IN DIFFERENT COUNTRIES, WITH SPECIAL REFERENCE TO DIETARY PRACTICES [J].
ARMSTRONG, B ;
DOLL, R .
INTERNATIONAL JOURNAL OF CANCER, 1975, 15 (04) :617-631
[10]   Essential role of protein kinase Cζ in the impairment of insulin-induced glucose transport in IRS-2-deficient brown adipocytes [J].
Arribas, M ;
Valverde, AM ;
Burks, D ;
Klein, J ;
Farese, RV ;
White, MF ;
Benito, M .
FEBS LETTERS, 2003, 536 (1-3) :161-166