Probabilistic checking of proofs: A new characterization of NP

被引:598
作者
Arora, S
Safra, S
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Tel Aviv Univ, Dept Math, IL-69978 Tel Aviv, Israel
[3] Univ Calif Berkeley, CS Div, Berkeley, CA 94720 USA
[4] Stanford Univ, Stanford, CA 94305 USA
[5] IBM Almaden, San Jose, CA USA
关键词
approximation algorithms; complexity hierarchies; computations on polynomials and finite fields; error-correcting codes; hardness of approximations; interactive computation; NP-completeness; probabilistic computation; proof checking; reducibility and completeness; trade-offs/relations among complexity; measures;
D O I
10.1145/273865.273901
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof. We discuss implications of this characterization; specifically, we show that approximating Clique and Independent Set, even in a very weak sense, is NP-hard.
引用
收藏
页码:70 / 122
页数:53
相关论文
共 57 条
  • [1] Ajtai M., 1987, P 19 ANN ACM S THEOR, P132
  • [2] SIMPLE CONSTRUCTIONS OF ALMOST K-WISE INDEPENDENT RANDOM-VARIABLES
    ALON, N
    GOLDREICH, O
    HASTAD, J
    PERALTA, R
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (03) : 289 - 304
  • [3] Arora S., 1992, Proceedings 33rd Annual Symposium on Foundations of Computer Science (Cat. No.92CH3188-0), P2, DOI 10.1109/SFCS.1992.267824
  • [4] Arora S., 1993, Proceedings. 34th Annual Symposium on Foundations of Computer Science (Cat. No.93CH3368-8), P724, DOI 10.1109/SFCS.1993.366815
  • [5] Arora S., 1992, P 33 IEEE S FDN COMP, P13
  • [6] Arora S., 1996, APPROXIMATION ALGORI
  • [7] ARORA S, 1997, P 29 ANN ACM S THEOR, P496
  • [8] Arora S., 1996, APPROXIMATION ALGORI
  • [9] ARORA S, 1992, UNPUB PCP APPROXIMAT
  • [10] Babai L., 1991, Computational Complexity, V1, P3, DOI 10.1007/BF01200056