A sucrose repression element in the Phaseolus vulgaris rbcS2 gene promoter resembles elements responsible for sugar stimulation of plant and mammalian genes

被引:31
作者
Urwin, NAR [1 ]
Jenkins, GI [1 ]
机构
[1] Univ Glasgow, Inst Biomed & Life Sci, Div Mol Biol & Biochem, Plant Mol Sci Grp, Glasgow G12 8QQ, Lanark, Scotland
基金
英国生物技术与生命科学研究理事会;
关键词
chalcone synthase; G-box; metabolic regulation; Phaseolus vulgaris L; rbcS genes; ribulose 1,5-bisphosphate carboxylase/oxygenase;
D O I
10.1023/A:1005950915499
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protoplasts isolated from the primary leaves of Phaseolus vulgaris L. were used in transient expression experiments to identify promoter sequences of the P. vulgaris rbcS2 gene, encoding ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit, concerned with sucrose repression. The protoplasts supported high rates of expression of the chloramphenicol acetyl transferase reporter gene fused to 1433 bp of the rbcS2 5' flanking sequences. Expression was repressed by 50 mM sucrose whereas that driven by control promoters was not. Assays of promoter deletions revealed that 203 bp 5' to the transcription start site were sufficient for high rates of sucrose-repressible expression. A -187 bp deletion supported much lower rates of expression and was not subject to sucrose repression. The -203 to -187 bp region contains sequences resembling elements involved in the sugar stimulation of transcription of other genes: the SURE (sucrose response element) of plant genes and the ChoRE (carbohydrate response element) of mammalian genes. A G-box (CACGTG) located at -200 to -205 was important for high levels of sucrose-repressible expression, since deletion of a nucleotide from this element in the context of the 1433 bp promoter gave much reduced expression. However, a modified G-box (CcCGTG) in the -203 bp fusion and adjacent vector sequences remained functional. Measurements of rbcS and chalcone synthase (CHS) transcript levels in the protoplasts indicated that 4 mM sucrose was sufficient to repress or stimulate the respective genes. Further experiments suggested that metabolism of 6-carbon sugars is the signal for rbcS repression and CHS stimulation.
引用
收藏
页码:929 / 942
页数:14
相关论文
共 51 条
[1]   CONSTITUTIVE, LIGHT-RESPONSIVE AND CIRCADIAN CLOCK-RESPONSIVE FACTORS COMPETE FOR THE DIFFERENT L-BOX ELEMENTS IN PLANT LIGHT-REGULATED PROMOTERS [J].
BORELLO, U ;
CECCARELLI, E ;
GIULIANO, G .
PLANT JOURNAL, 1993, 4 (04) :611-619
[2]   SUCROSE MIMICS THE LIGHT INDUCTION OF ARABIDOPSIS NITRATE REDUCTASE GENE-TRANSCRIPTION [J].
CHENG, CL ;
ACEDO, GN ;
CRISTINSIN, M ;
CONKLING, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (05) :1861-1864
[3]   BINDING OF A PEA NUCLEAR-PROTEIN TO PROMOTERS OF CERTAIN PHOTOREGULATED GENES IS MODULATED BY PHOSPHORYLATION [J].
DATTA, N ;
CASHMORE, AR .
PLANT CELL, 1989, 1 (11) :1069-1077
[4]   STRUCTURE, EVOLUTION, AND REGULATION OF RBCS GENES IN HIGHER-PLANTS [J].
DEAN, C ;
PICHERSKY, E ;
DUNSMUIR, P .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1989, 40 :415-439
[5]   SLOW-GROWTH PHENOTYPE OF TRANSGENIC TOMATO EXPRESSING APOPLASTIC INVERTASE [J].
DICKINSON, CD ;
ALTABELLA, T ;
CHRISPEELS, MJ .
PLANT PHYSIOLOGY, 1991, 95 (02) :420-425
[6]   MUTATION OF EITHER G-BOX OR I-BOX SEQUENCES PROFOUNDLY AFFECTS EXPRESSION FROM THE ARABIDOPSIS RBCS-1A PROMOTER [J].
DONALD, RGK ;
CASHMORE, AR .
EMBO JOURNAL, 1990, 9 (06) :1717-1726
[7]  
DUNSMUIR P, 1988, PLANT MOL BIOL MANUA
[8]   MOLECULAR LIGHT SWITCHES FOR PLANT GENES [J].
GILMARTIN, PM ;
SAROKIN, L ;
MEMELINK, J ;
CHUA, NH .
PLANT CELL, 1990, 2 (05) :369-378
[9]   AN EVOLUTIONARILY CONSERVED PROTEIN-BINDING SEQUENCE UPSTREAM OF A PLANT LIGHT-REGULATED GENE [J].
GIULIANO, G ;
PICHERSKY, E ;
MALIK, VS ;
TIMKO, MP ;
SCOLNIK, PA ;
CASHMORE, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (19) :7089-7093
[10]   CARBON CATABOLITE REPRESSION REGULATES GLYOXYLATE CYCLE GENE-EXPRESSION IN CUCUMBER [J].
GRAHAM, IA ;
DENBY, KJ ;
LEAVER, CJ .
PLANT CELL, 1994, 6 (05) :761-772