Structures and Stabilities of endo- and exohedral dodecahedrane complexes (X@C20H20 and XC20H20, X = H+, H, N, P, C-, Si-, O+, S+)

被引:44
作者
Chen, ZF
Jiao, HJ
Moran, D
Hirsch, A
Thiel, W
Schleyer, PV
机构
[1] Univ Erlangen Nurnberg, Inst Organ Chem, D-91054 Erlangen, Germany
[2] Univ Georgia, Athens, GA 30602 USA
[3] Shanxi Normal Univ, Dept Chem, Linfen 041004, Peoples R China
[4] Univ Rostock, Leibniz Inst Organ Katalyse, D-18055 Rostock, Germany
[5] Max Planck Inst Kohlenforsch, D-45466 Mulheim, Germany
关键词
D O I
10.1021/jp0273631
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
B3LYP/6-31G* computations predict the relative energies and stabilities of the endohedral (X@C20H20) and exohedral (XC20H20) dodecahedrane complexes (X = H+, H, N, P, C-, Si-, O+, S+). H+ does not bind endohedrally but bridges a C-C bond exohedrally; the proton affinity is 185.3 kcal/mol. Except for O+, all other guest species (H, N, P, C-, Si-, S+) are minima at the cage center. The H-atom inclusion energy is similar to that of helium (36.3 vs 38.0 kcal/mol), whereas the other endohedral complexes have much higher inclusion energies (125-305 kcal/mol). In all cases, the endohedral complexes are energetically less favorable than their exohedral isomers. C20H21 has a cage-ruptured structure, whereas N, P, and their isoelectronic analogues have exohedral structures and bind as doublet states to broken cage C-C bonds. Endohedral H, N, C-, O+, and S+ preserve their unencapsulated ground states, whereas P and Si- interact strongly with the cage and lose their atomic ground-state character.
引用
收藏
页码:2075 / 2079
页数:5
相关论文
共 49 条
[1]   CONFORMATIONAL-ANALYSIS .130. MM2 - HYDROCARBON FORCE-FIELD UTILIZING V1 AND V2 TORSIONAL TERMS [J].
ALLINGER, NL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (25) :8127-8134
[2]   STRUCTURES OF NORBORNANE AND DODECAHEDRANE BY MOLECULAR MECHANICS CALCULATIONS (MM3), X-RAY CRYSTALLOGRAPHY, AND ELECTRON-DIFFRACTION [J].
ALLINGER, NL ;
GEISE, HJ ;
PYCKHOUT, W ;
PAQUETTE, LA ;
GALLUCCI, JC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (03) :1106-1114
[3]   EXPERIMENTAL ENTHALPIES OF FORMATION AND STRAIN ENERGIES FOR THE CAGED C20H20 PAGODANE AND DODECAHEDRANE FRAMEWORKS [J].
BECKHAUS, HD ;
RUCHARDT, C ;
LAGERWALL, DR ;
PAQUETTE, LA ;
WAHL, F ;
PRINZBACH, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (26) :11775-11778
[4]   The pagodane->dodecahedrane concept - Shorter routes, higher yields [J].
Bertau, M ;
Leonhardt, J ;
Weiler, A ;
Weber, K ;
Prinzbach, H .
CHEMISTRY-A EUROPEAN JOURNAL, 1996, 2 (05) :570-579
[5]   From pagodanes to dodecahedranes - Search for a serviceable access to the parent (C20H20) hydrocarbon [J].
Bertau, M ;
Wahl, F ;
Weiler, A ;
Scheumann, K ;
Worth, J ;
Keller, M ;
Prinzbach, H .
TETRAHEDRON, 1997, 53 (29) :10029-10040
[6]   GAS-PHASE PROTON AFFINITIES FOR H2O, C2H4, AND C2H6 [J].
BOHME, DK ;
MACKAY, GI .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1981, 103 (09) :2173-2175
[7]   Dodecahedryl anion formation and an experimental determination of the acidity and C-H bond dissociation energy of dodecahedrane [J].
Broadus, KM ;
Kass, SR ;
Osswald, T ;
Prinzbach, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (44) :10964-10968
[8]   PROTONATED ETHANE - A THEORETICAL INVESTIGATION OF C2H7+ STRUCTURES AND ENERGIES [J].
CARNEIRO, JWD ;
SCHLEYER, PV ;
SAUNDERS, M ;
REMINGTON, R ;
SCHAEFER, HF ;
RAUK, A ;
SORENSEN, TS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (08) :3483-3493
[9]   Theoretical investigation into structures and magnetic properties of smaller fullerenes and their heteroanalogues [J].
Chen, ZF ;
Jiao, HJ ;
Bühl, M ;
Hirsch, A ;
Thiel, W .
THEORETICAL CHEMISTRY ACCOUNTS, 2001, 106 (05) :352-363
[10]   Putting helium inside dodecahedrane [J].
Cross, RJ ;
Saunders, M ;
Prinzbach, H .
ORGANIC LETTERS, 1999, 1 (09) :1479-1481