Evaluation of kernel density estimation methods for daily precipitation resampling

被引:39
作者
Rajagopalan, B [1 ]
Lall, U
Tarboton, DG
机构
[1] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[2] Utah State Univ, Utah Water Res Lab, Dept Civil & Environm Engn, Logan, UT 84322 USA
来源
STOCHASTIC HYDROLOGY AND HYDRAULICS | 1997年 / 11卷 / 06期
关键词
D O I
10.1007/BF02428432
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Kernel density estimators are useful building blocks for empirical statistical modeling of precipitation and other hydroclimatic variables. Data driven estimates of the marginal probability density function of these variables (which may have discrete or continuous arguments) provide a useful basis for Monte Carlo resampling and are also useful for posing and testing hypotheses (e.g. bimodality) as to the frequency distributions of the variable. In this paper, some issues related to the selection and design of univariate kernel density estimators are reviewed. Some strategies for bandwidth and kernel selection are discussed in an applied context and recommendations for parameter selection are offered. This paper complements the nonparametric wet/dry spell resampling methodology presented in Lall et al. (1996).
引用
收藏
页码:523 / 547
页数:25
相关论文
共 31 条
[1]   ON BANDWIDTH VARIATION IN KERNEL ESTIMATES - A SQUARE ROOT LAW [J].
ABRAMSON, IS .
ANNALS OF STATISTICS, 1982, 10 (04) :1217-1223
[2]  
[Anonymous], 1987, AUST J STAT, DOI DOI 10.1111/j.1467-842X.1987.tb00717.x
[3]  
Bishop Y.M., 2007, DISCRETE MULTIVARIAT
[4]  
Chiu ST, 1996, STAT SINICA, V6, P129
[5]  
Coomans D., 1986, POTENTIAL PATTERN RE
[6]  
DONG JP, 1994, J COMPUTATIONAL GRAP, V3, P1
[7]   NON-PARAMETRIC ESTIMATION OF A MULTIVARIATE PROBABILITY DENSITY [J].
EPANECHN.VA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (01) :153-&
[8]   NONPARAMETRIC ROUGHNESS PENALTIES FOR PROBABILITY DENSITIES [J].
GOOD, IJ ;
GASKINS, RA .
BIOMETRIKA, 1971, 58 (02) :255-+
[9]  
Gyorfi L., 1985, The L 1 View
[10]   EXTENT TO WHICH LEAST-SQUARES CROSS-VALIDATION MINIMIZES INTEGRATED SQUARE ERROR IN NONPARAMETRIC DENSITY-ESTIMATION [J].
HALL, P ;
MARRON, JS .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 74 (04) :567-581