A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production

被引:53
作者
Cordier, Helene
Mendes, Filipa
Vasconcelos, Isabel
Francois, Jean M.
机构
[1] Inst Natl Sci Appl, Lab Biotechnol & Bioprocedes, UMR CNRS, F-31077 Toulouse 04, France
[2] INRA 792, Toulouse, France
[3] Univ Catolica Portuguesa, Escola Super Biotecnol, Porto, Portugal
关键词
glycerol metabolism; genetic engineering; metabolic regulation; transcriptomic analysis; Saccharomyces cerevisiae;
D O I
10.1016/j.ymben.2007.03.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Towards a global objective to produce chemical derivatives by microbial processes, this work dealt with a metabolic engineering of the yeast Saccharomyces cerevisiae for glycerol production. To accomplish this goal, overexpression of GPD1 was introduced in a tpil Delta mutant defective in triose phosphate isomerase. This strategy alleviated the inositol-less phenotype of this mutant, by reducing the levels of dihydroxyacetone phosphate and glycerol-3-P, two potent inhibitors of myo-inositol synthase that catalyzes the formation of inositol-6-phosphate from glucose-6-phosphate. Further deletion of ADHI and overexpression of ALD3, encoding, respectively, the major NAD(+) -dependent alcohol dehydrogenase and a cytosolic NAD+-dependent aldehyde dehydrogenase yielded a yeast strain able to produce 0.46 g glycerol (g glucose)(-1) at a maximal rate of 3.1 mmol (g dry mass)(-1) h(-1) in aerated batch cultures. At the metabolic level, this genetic strategy shifted the flux control coefficient of the pathway to the level of the glycerol efflux, with a consequent intracellular accumulation of glycerol that could be partially reduced by the overproduction of glycerol exporter encoded by FPS1. At the transcriptomic level, this metabolic reprogramming brought about the upregulation of genes encoding NAD(+)/NADP(+) binding proteins, a partial derepression of genes coding for TCA cycle and respiratory enzymes, and a downregulation of genes implicated in protein biosynthesis and ribosome biogenesis. Altogether, these metabolic and molecular alterations stand for major hurdles that may represent potential targets for further optimizing glycerol production in yeast. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:364 / 378
页数:15
相关论文
共 71 条
[1]   CHARACTERIZATION OF THE OSMOTIC-STRESS RESPONSE IN SACCHAROMYCES-CEREVISIAE - OSMOTIC-STRESS AND GLUCOSE REPRESSION REGULATE GLYCEROL-3-PHOSPHATE DEHYDROGENASE INDEPENDENTLY [J].
ALBERTYN, J ;
HOHMANN, S ;
PRIOR, BA .
CURRENT GENETICS, 1994, 25 (01) :12-18
[2]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[3]   PURIFICATION AND CHARACTERIZATION OF GLYCEROL-3-PHOSPHATE DEHYDROGENASE OF SACCHAROMYCES-CEREVISIAE [J].
ALBERTYN, J ;
VANTONDER, A ;
PRIOR, BA .
FEBS LETTERS, 1992, 308 (02) :130-132
[4]   Inositol and phosphate regulate GIT1 transcription and glycerophosphoinositol incorporation in Saccharomyces cerevisiae [J].
Almaguer, C ;
Mantella, D ;
Perez, E ;
Patton-Vogt, J .
EUKARYOTIC CELL, 2003, 2 (04) :729-736
[5]   The two isoenzymes for yeast NAD(+)-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation [J].
Ansell, R ;
Granath, K ;
Hohmann, S ;
Thevelein, JM ;
Adler, L .
EMBO JOURNAL, 1997, 16 (09) :2179-2187
[6]   Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae [J].
Bakker, BM ;
Overkamp, KM ;
van Maris, AJA ;
Kötter, P ;
Luttik, MAH ;
van Dijken, JP ;
Pronk, JT .
FEMS MICROBIOLOGY REVIEWS, 2001, 25 (01) :15-37
[7]   LINEAR ONE-STEP ASSAY FOR THE DETERMINATION OF ORTHO-PHOSPHATE [J].
BENCINI, DA ;
WILD, JR ;
ODONOVAN, GA .
ANALYTICAL BIOCHEMISTRY, 1983, 132 (02) :254-258
[8]  
BISPING B, 1988, BIOTECHNOL APPL BIOC, V10, P87
[9]   Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast -: art. no. R49 [J].
Blank, LM ;
Kuepfer, L ;
Sauer, U .
GENOME BIOLOGY, 2005, 6 (06)
[10]   TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates [J].
Blank, LM ;
Sauer, U .
MICROBIOLOGY-SGM, 2004, 150 :1085-1093