Localization in Fock space: A finite-energy scaling hypothesis for for many-particle excitation statistics

被引:44
作者
Berkovits, R [1 ]
Avishai, Y
机构
[1] Bar Ilan Univ, Dept Phys, Minerva Ctr Phys Mesoscop Fractals & Neural Netwo, IL-52900 Ramat Gan, Israel
[2] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
关键词
D O I
10.1103/PhysRevLett.80.568
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The concept of localization in Fock space is extended to the study of the many-particle excitation statistics of interacting electrons in a finite two dimensional quantum dot. In addition, a finite-size scaling hypothesis for Fock space localization, in which the excitation energy replaces the system size, is developed and tested by analyzing the spectral properties of the quantum dot. This scaling hypothesis, modeled after the usual Anderson transition scaling, fits the numerical data obtained for the interacting states in the dot. It therefore attests to the relevance of the Fock space localization scenario to the description of many-particle excitation properties.
引用
收藏
页码:568 / 571
页数:4
相关论文
共 16 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]  
ABUCHAKRA R, 1973, J PHYS C SOLID STATE, V6, P1734
[3]   Quasiparticle lifetime in a finite system: A nonperturbative approach [J].
Altshuler, BL ;
Gefen, Y ;
Kamenev, A ;
Levitov, LS .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2803-2806
[4]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[5]   CROSSOVER PHENOMENA IN THE EXCITATION STATISTICS OF DISORDERED MANY-PARTICLE SYSTEMS [J].
BERKOVITS, R .
EUROPHYSICS LETTERS, 1994, 25 (09) :681-686
[6]  
BERKOVITS R, 1996, J PHYS-CONDENS MAT, V8, P391
[7]   Towards a statistical theory of finite Fermi systems and compound states: Random two-body interaction approach [J].
Flambaum, VV ;
Izrailev, FM ;
Casati, G .
PHYSICAL REVIEW E, 1996, 54 (02) :2136-2139
[8]   Wigner random banded matrices with sparse structure: Local spectral density of states [J].
Fyodorov, YV ;
Chubykalo, OA ;
Izrailev, FM ;
Casati, G .
PHYSICAL REVIEW LETTERS, 1996, 76 (10) :1603-1606
[9]   COHERENT PROPAGATION OF 2 INTERACTING PARTICLES IN A RANDOM POTENTIAL [J].
IMRY, Y .
EUROPHYSICS LETTERS, 1995, 30 (07) :405-408
[10]   Emergence of quantum chaos in finite interacting Fermi systems [J].
Jacquod, P ;
Shepelyansky, DL .
PHYSICAL REVIEW LETTERS, 1997, 79 (10) :1837-1840