Multiple splicing defects in an intronic false exon

被引:166
作者
Sun, HZ [1 ]
Chasin, LA [1 ]
机构
[1] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
关键词
D O I
10.1128/MCB.20.17.6414-6425.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Splice site consensus sequences alone are insufficient to dictate the recognition of real constitutive splice sites within the typically large transcripts of higher eukaryotes, and large numbers of pseudoexons Banked by pseudosplice sites with good matches to the consensus sequences can be easily designated, In an attempt to identify elements that prevent pseudoexon splicing, we have systematically altered known splicing signals, as well as immediately adjacent flanking sequences, of an arbitrarily chosen pseudoexon from intron 1 of the human hprt gene. The substitution of a 5' splice site that perfectly matches the 5' consensus combined a with mutation to match the CAG/G sequence of the 3' consensus failed to get this model pseudoexon included as the central exon in a dhfr minigene context. Provision of a real 3' splice site and a consensus 5' splice site and removal of an upstream inhibitory sequence were necessary and sufficient to confer splicing on the pseudoexon, This activated context also supported the splicing of a second pseudoexon sequence containing no apparent enhancer. Thus, both the 5' splice site sequence and the polypyrimidine tract of the pseudoexon are defective despite their good agreement with the consensus. On the other hand, the pseudoexon body did not exert a negative influence on splicing. The introduction into the pseudoexon of a sequence selected for binding to ASF/SF2 or its replacement with beta-globin exon 2 only partially reversed the effect of the upstream negative element and the defective polypyrimidine tract. These results support the idea that exon-bridging enhancers are not a prerequisite for constitutive exon definition and suggest that intrinsically defective splice sites and negative elements play important roles in distinguishing the real splicing signal from the vast number of false splicing signals.
引用
收藏
页码:6414 / 6425
页数:12
相关论文
共 94 条
[1]  
ALI SA, 1995, BIOTECHNIQUES, V18, P746
[2]   PRESENCE OF NEGATIVE AND POSITIVE CIS-ACTING RNA SPLICING ELEMENTS WITHIN AND FLANKING THE FIRST TAT CODING EXON OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 [J].
AMENDT, BA ;
HESSLEIN, D ;
CHANG, LJ ;
STOLTZFUS, CM .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :3960-3970
[3]   PREMESSENGER RNA SECONDARY STRUCTURE AND THE REGULATION OF SPLICING [J].
BALVAY, L ;
LIBRI, D ;
FISZMAN, MY .
BIOESSAYS, 1993, 15 (03) :165-169
[4]   Standardized nomenclature for Alu repeats [J].
Batzer, MA ;
Deininger, PL ;
HellmannBlumberg, U ;
Jurka, J ;
Labuda, D ;
Rubin, CM ;
Schmid, CW ;
Zietkiewicz, E ;
Zuckerkandl, E .
JOURNAL OF MOLECULAR EVOLUTION, 1996, 42 (01) :3-6
[5]   SPLICING OF BALBIANI RING-1 GENE PREMESSENGER RNA OCCURS SIMULTANEOUSLY WITH TRANSCRIPTION [J].
BAUREN, G ;
WIESLANDER, L .
CELL, 1994, 76 (01) :183-192
[6]   SPLICE SITE SELECTION, RATE OF SPLICING, AND ALTERNATIVE SPLICING ON NASCENT TRANSCRIPTS [J].
BEYER, AL ;
OSHEIM, YN .
GENES & DEVELOPMENT, 1988, 2 (06) :754-765
[7]   Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization [J].
Blanchette, M ;
Chabot, B .
EMBO JOURNAL, 1999, 18 (07) :1939-1952
[8]  
Blanchette M, 1997, RNA, V3, P405
[9]   HIGH-FREQUENCY NONRANDOM MUTATIONAL EVENT AT THE ADENINE PHOSPHORIBOSYLTRANSFERASE (APRT) LOCUS OF SIB-SELECTED CHO VARIANTS HETEROZYGOUS FOR APRT [J].
BRADLEY, WEC ;
LETOVANEC, D .
SOMATIC CELL GENETICS, 1982, 8 (01) :51-66
[10]  
Burnette JM, 1999, GENETICS, V151, P1517