Acute reversal of lipid-induced muscle insulin resistance is associated with rapid alteration in PKC-θ localization

被引:41
作者
Bell, KS [1 ]
Schmitz-Peiffer, C [1 ]
Lim-Fraser, M [1 ]
Biden, TJ [1 ]
Cooney, GJ [1 ]
Kraegen, EW [1 ]
机构
[1] Garvan Inst Med Res, Sydney, NSW 2010, Australia
来源
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM | 2000年 / 279卷 / 05期
关键词
high-fat-fed rat; glucose; long-chain acyl-coenzyme A;
D O I
10.1152/ajpendo.2000.279.5.E1196
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Muscle insulin resistance in the chronic high-fat-fed rat is associated with increased membrane translocation and activation of the novel, lipid-responsive, protein kinase C (nPKC) isozymes PKC-theta and -epsilon. Surprisingly, fat-induced insulin resistance can be readily reversed by one high-glucose low-fat meal, but the underlying mechanism is unclear. Here, we have used this model to determine whether changes in the translocation of PKC-theta and -epsilon are associated with the acute reversal of insulin resistance. We measured cytosol and particulate PKC-alpha and nPKC-theta and -epsilon in muscle in control chow-fed Wistar rats (C) and 3-wk high-fat-fed rats with (HF-G) or without (HF-F) a single high-glucose meal. PKC-theta and -epsilon were translocated to the membrane in muscle of insulin-resistant HF-F rats. However, only membrane PKC-theta was reduced to the level of chow-fed controls when insulin resistance was reversed in HF-G rats [% PKC-theta at membrane, 23.0 +/- 4.4% (C); 39.7 +/- 3.4% (HF-F, P < 0.01 vs. C); 22.5 +/- 2.7% (HF-G, P < 0.01 vs. HF-F), by ANOVA]. We conclude that, although muscle localization of both PKC-epsilon and PKC-theta are influenced by chronic dietary lipid oversupply, PKC-epsilon and PKC-theta localization are differentially influenced by acute withdrawal of dietary lipid. These results provide further support for an association between PKC-theta muscle cellular localization and lipid-induced muscle insulin resistance and stress the labile nature of high-fat diet-induced insulin resistance in the rat.
引用
收藏
页码:E1196 / E1201
页数:6
相关论文
共 28 条
[1]  
AHMAD Z, 1984, J BIOL CHEM, V259, P8743
[2]   Chronic activation of protein kinase C in soleus muscles and other tissues of insulin-resistant type II diabetic Goto-Kakizaki (GK), obese/aged, and obese/Zucker rats - A mechanism for inhibiting glycogen synthesis [J].
Avignon, A ;
Yamada, K ;
Zhou, XP ;
Spencer, B ;
Cardona, O ;
SabaSiddique, S ;
Galloway, L ;
Standaert, ML ;
Farese, RV .
DIABETES, 1996, 45 (10) :1396-1404
[3]   PROTEIN-KINASE-C DIRECTLY PHOSPHORYLATES THE INSULIN-RECEPTOR INVITRO AND REDUCES ITS PROTEIN-TYROSINE KINASE-ACTIVITY [J].
BOLLAG, GE ;
ROTH, RA ;
BEAUDOIN, J ;
MOCHLYROSEN, D ;
KOSHLAND, DE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (16) :5822-5824
[4]   DIACYLGLYCEROL ACTIVATION OF PROTEIN KINASE-C IS MODULATED BY LONG-CHAIN ACYL-COA [J].
BRONFMAN, M ;
MORALES, MN ;
ORELLANA, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1988, 152 (03) :987-992
[5]   Abdominal fat and insulin resistance in normal and overweight women - Direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM [J].
Carey, DG ;
Jenkins, AB ;
Campbell, LV ;
Freund, J ;
Chisholm, DJ .
DIABETES, 1996, 45 (05) :633-638
[6]   ACTIVATION OF PROTEIN-KINASE C-ALPHA INHIBITS INSULIN-STIMULATED TYROSINE PHOSPHORYLATION OF INSULIN-RECEPTOR SUBSTRATE-1 [J].
CHIN, JE ;
LIU, F ;
ROTH, RA .
MOLECULAR ENDOCRINOLOGY, 1994, 8 (01) :51-58
[7]  
CHIN JE, 1993, J BIOL CHEM, V268, P6338
[8]   PROTEIN-KINASE-C IS INCREASED IN THE LIVER OF HUMANS AND RATS WITH NONINSULIN-DEPENDENT DIABETES-MELLITUS - AN ALTERATION NOT DUE TO HYPERGLYCEMIA [J].
CONSIDINE, RV ;
NYCE, MR ;
ALLEN, LE ;
MORALES, LM ;
TRIESTER, S ;
SERRANO, J ;
COLBERG, J ;
LANZAJACOBY, S ;
CARO, JF .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 95 (06) :2938-2944
[9]   Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase [J].
DeFea, K ;
Roth, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (50) :31400-31406
[10]   Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612 [J].
DeFea, K ;
Roth, RA .
BIOCHEMISTRY, 1997, 36 (42) :12939-12947