The numerical solution of one-dimensional phase change problems using an adaptive moving mesh method

被引:50
作者
Mackenzie, JA [1 ]
Robertson, ML [1 ]
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
关键词
D O I
10.1006/jcph.2000.6511
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An adaptive moving mesh method is developed for the numerical solution of an enthalpy formulation of heat conduction problems with a phase change. The algorithm is based on a very simple mesh modification strategy that allows the smooth evolution of mesh nodes to track interfaces. At each time step the nonlinear enthalpy equation is solved using a novel semi-implicit moving mesh discretisation which is shown to possess a unique solution. Numerical examples are given for a two-phase freezing problem, a model of a spot-welding process, and a three-phase problem with a varying number of interfaces. These test cases demonstrate the accuracy and effectiveness of the overall strategy. (C) 2000 Academic Press.
引用
收藏
页码:537 / 557
页数:21
相关论文
共 24 条
[1]   A MOVING FINITE-ELEMENT METHOD WITH ERROR ESTIMATION AND REFINEMENT FOR ONE-DIMENSIONAL TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ADJERID, S ;
FLAHERTY, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :778-796
[2]  
[Anonymous], 1974, LECT NOTES MATH
[3]  
Atthey D. R., 1974, J I MATHS APPLICS, V13, P353
[4]   ON SIMPLE MOVING GRID METHODS FOR ONE-DIMENSIONAL EVOLUTIONARY PARTIAL-DIFFERENTIAL EQUATIONS [J].
BLOM, JG ;
SANZSERNA, JM ;
VERWER, JG .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 74 (01) :191-213
[5]   NUMERICAL SOLUTION OF PHASE-CHANGE PROBLEMS [J].
BONACINA, C ;
COMINI, G ;
FASANO, A ;
PRIMICERIO, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1973, 16 (10) :1825-1832
[6]   An r-adaptive finite element method based upon moving mesh PDEs [J].
Cao, WM ;
Huang, WZ ;
Russell, RD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (02) :221-244
[7]   GRADING FUNCTIONS AND MESH REDISTRIBUTION [J].
CAREY, GF ;
DINH, HT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (05) :1028-1040
[8]  
Carslaw H. S., 1959, CONDUCTION HEAT SOLI
[9]  
Crank J., 1984, Free and Moving Boundary Problems
[10]   SIMPLE ADAPTIVE GRIDS FOR 1-D INITIAL-VALUE PROBLEMS [J].
DORFI, EA ;
DRURY, LO .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 69 (01) :175-195