Propagation of cold pulses and heat pulses in ASDEX Upgrade

被引:58
作者
Ryter, F
Neu, R
Dux, R
Fahrbach, HU
Leuterer, F
Pereverzev, G
Schweinzer, J
Stober, J
Suttrop, W
De Luca, F
Jacchia, A
Kinsey, JE
机构
[1] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany
[2] Univ Milan, INFM, Milan, Italy
[3] Univ Milan, Dipartimento Fis, Milan, Italy
[4] ENEA, CNR, Ist Fis Plasma, EURATOM Assoc, Milan, Italy
[5] Gen Atom, San Diego, CA USA
关键词
D O I
10.1088/0029-5515/40/11/311
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Experiments on electron heat transport were performed in the tokamak ASDEX Upgrade, mainly in ohmically heated plasmas, applying either edge cooling with laser blow-off impurity injection or edge heat pulses with ECRH. Repetitive pulses within one plasma discharge were made allowing Fourier transformation of the temperature perturbation, yielding a good signal to noise ratio up to high harmonics and a detailed investigation of the pulse propagation. For densities lower than 1.8 x 10(19) m(-3), an increase of central electron temperature was found as the response to edge cooling via impurity injection similar to observations made in the TEXT, TFTR, RTP and Tore Supra tokamaks. The inversion does not appear instantaneously, but with a time delay roughly compatible with diffusion. Modelling of the propagation of the cold pulses in the framework of the IFS-PPPL model yields qualitative agreement. However, the predicted increase of ion temperature is not observed experimentally on a fast timescale. The response to ECRH heat pulses is not perfectly symmetrical to cold pulse experiments, but the similarities suggest a common underlying physical mechanism. No inversion of the heat pulse is found, instead the initial pulse from the edge is associated with a second, much slower, heat pulse in the centre. This central reaction is in fact quite similar (and not symmetrical) to that of the cold pulses. By varying the position of the ECRH deposition it could be shown that the central increase is related to the arrival of the pulse close to the inversion radius and not to the initial pulse. Modelling was performed to investigate the possible physics mechanisms and for comparison with the cold pulses.
引用
收藏
页码:1917 / 1932
页数:16
相关论文
共 29 条
[1]  
BEHRINGER K, 1987, JETR8708 STRAHL
[2]   Evidence and concepts for non-local transport [J].
Callen, JD ;
Kissick, MW .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 :B173-B188
[3]   PERTURBATIVE TRANSPORT STUDIES IN FUSION PLASMAS [J].
CARDOZO, NJL .
PLASMA PHYSICS AND CONTROLLED FUSION, 1995, 37 (08) :799-852
[4]   THE TIME BEHAVIOR OF THE THERMAL-CONDUCTIVITY DURING L-]H AND H-]L TRANSITIONS IN JET [J].
CORDEY, JG ;
MUIR, DG ;
NEUDATCHIN, SV ;
PARAIL, VV ;
ALIARSHAD, S ;
BARTLETT, DV ;
CAMPBELL, DJ ;
COSTLEY, AE ;
COLTON, AL ;
EDWARDS, AW ;
PORTE, L ;
SIPS, ACC ;
SPRINGMANN, EM ;
STUBBERFIELD, PM ;
VAYAKIS, G ;
VONHELLERMANN, MG ;
TARONI, A ;
THOMSEN, K .
PLASMA PHYSICS AND CONTROLLED FUSION, 1994, 36 (07) :A267-A272
[5]   BALLISTIC CONTRIBUTIONS TO HEAT-PULSE PROPAGATION IN THE TFTR TOKAMAK [J].
FREDRICKSON, ED ;
MCGUIRE, K ;
CAVALLO, A ;
BUDNY, R ;
JANOS, A ;
MONTICELLO, D ;
NAGAYAMA, Y ;
PARK, W ;
TAYLOR, G ;
ZARNSTORFF, MC .
PHYSICAL REVIEW LETTERS, 1990, 65 (23) :2869-2872
[6]  
FUCHS JC, 1994, CONTROLLED FUSIO B 3, V18, P1308
[7]   'Non-local' response of RTP ohmic plasmas to peripheral perturbations [J].
Galli, P ;
Gorini, G ;
Mantica, P ;
Hogeweij, GMD ;
de Kloe, J ;
Cardozo, NJL .
NUCLEAR FUSION, 1999, 39 (10) :1355-1368
[8]   The evidence for nonlocal transport in the Texas Experimental Tokamak [J].
Gentle, KW ;
Bravenec, RV ;
Cima, G ;
Hallock, GA ;
Phillips, PE ;
Ross, DW ;
Rowan, WL ;
Wootton, AJ ;
Crowley, TP ;
Ouroua, A ;
Schoch, PM ;
Watts, C .
PHYSICS OF PLASMAS, 1997, 4 (10) :3599-3613
[9]   AN EXPERIMENTAL COUNTEREXAMPLE TO THE LOCAL TRANSPORT PARADIGM [J].
GENTLE, KW ;
BRAVENEC, RV ;
CIMA, G ;
GASQUET, H ;
HALLOCK, GA ;
PHILLIPS, PE ;
ROSS, DW ;
ROWAN, WL ;
WOOTTON, AJ ;
CROWLEY, TP ;
HEARD, J ;
OUROUA, A ;
SCHOCH, PM ;
WATTS, C .
PHYSICS OF PLASMAS, 1995, 2 (06) :2292-2298
[10]   STRONG NONLOCAL EFFECTS IN A TOKAMAK PERTURBATIVE TRANSPORT EXPERIMENT [J].
GENTLE, KW ;
ROWAN, WL ;
BRAVENEC, RV ;
CIMA, G ;
CROWLEY, TP ;
GASQUET, H ;
HALLOCK, GA ;
HEARD, J ;
OUROUA, A ;
PHILLIPS, PE ;
ROSS, DW ;
SCHOCH, PM ;
WATTS, C .
PHYSICAL REVIEW LETTERS, 1995, 74 (18) :3620-3623