Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation

被引:112
作者
Stern, Jennifer C.
Chanton, Jeff [1 ]
Abichou, Tarek
Powelson, David
Yuan, Lei
Escoriza, Sharon
Bogner, Jean
机构
[1] Florida State Univ, Dept Oceanog, Tallahassee, FL 32306 USA
[2] Florida A&M Univ, Dept Civil & Environm Engn, Tallahassee, FL 32310 USA
[3] Florida State Univ, Dept Civil & Environm Engn, Coll Engn, Tallahassee, FL 32310 USA
[4] Landfills Inc, Wheaton, IL 60187 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.wasman.2006.07.018
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biologically-active landfill cover soils (biocovers) that serve to minimize CH4 emissions by optimizing CH4 oxidation were investigated at a landfill in Florida, USA. The biocover consisted of 50 cm pre-composted yard or garden waste placed over a 10-15 cm gas distribution layer (crushed glass) over a 40-100 cm interim cover. The biocover cells reduced CH4 emissions by a factor of 10 and doubled the percentage of CH4 oxidation relative to control cells. The thickness and moisture-holding capacity of the biocover resulted in increased retention times for transported CH4. This increased retention of CH4 in the biocover resulted in a higher fraction oxidized. Overall rates between the two covers were similar, about 2 g CH4 m(-2) d(-1), but because CH4 entered the biocover from below at a slower rate relative to the soil cover, a higher percentage was oxidized. In part, methane oxidation controlled the net flux of CH4 to the atmosphere. The biocover cells became more effective than the control sites in oxidizing CH4 3 months after their initial placement: the mean percent oxidation for the biocover cells was 41% compared to 14% for the control cells (p < 0.001). Following the initial 3 months, we also observed 29 (27%) negative CH4 fluxes and 27 (25%) zero fluxes in the biocover cells but only 6 (6%) negative fluxes and 22 (21%) zero fluxes for the control cells. Negative fluxes indicate uptake of atmospheric CH4. If the zero and negative fluxes are assumed to represent 100% oxidation, then the mean percent oxidation for the biocover and control cells, respectively, for the same period would increase to 64% and 30%. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1248 / 1258
页数:11
相关论文
共 38 条
[1]  
ABICHOU T, 2006, J ENV ENG AM SOC CIV, P220
[2]   Methane flux and oxidation at two types of intermediate landfill covers [J].
Abichou, Tarek ;
Chanton, Jeffery ;
Powelson, David ;
Fleiger, Jill ;
Escoriaza, Sharon ;
Lei, Yuan ;
Stern, Jennifer .
WASTE MANAGEMENT, 2006, 26 (11) :1305-1312
[3]  
[Anonymous], 2001, INT PAN CLIM CHANG C
[4]   CARBON ISOTOPE FRACTIONATION DURING MICROBIAL METHANE OXIDATION [J].
BARKER, JF ;
FRITZ, P .
NATURE, 1981, 293 (5830) :289-291
[5]   Evaluation of a biologically active cover for mitigation of landfill gas emissions [J].
Barlaz, MA ;
Green, RB ;
Chanton, JP ;
Goldsmith, CD ;
Hater, GR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (18) :4891-4899
[6]   Stable isotopic signatures (δ13C, δD) of methane from European landfill sites [J].
Bergamaschi, P ;
Lubina, C ;
Konigstedt, R ;
Fischer, H ;
Veltkamp, AC ;
Zwaagstra, O .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D7) :8251-8265
[7]   Methane emission from a landfill and the methane oxidising capacity of its covering soil [J].
Boeckx, P ;
vanCleemput, O ;
Villaralvo, I .
SOIL BIOLOGY & BIOCHEMISTRY, 1996, 28 (10-11) :1397-1405
[8]   Kinetics of methane oxidation in a landfill cover soil: Temporal variations, a whole landfill oxidation experiment, and modeling of net CH4 emissions [J].
Bogner, JE ;
Spokas, KA ;
Burton, EA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (09) :2504-2514
[9]   Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios [J].
Börjesson, G ;
Chanton, J ;
Svensson, BH .
JOURNAL OF ENVIRONMENTAL QUALITY, 2001, 30 (02) :369-376
[10]   Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique [J].
Chanton, J ;
Liptay, K .
GLOBAL BIOGEOCHEMICAL CYCLES, 2000, 14 (01) :51-60