An additive Schwarz preconditioner for the FETI method

被引:15
作者
Brenner, SC [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
D O I
10.1007/s002110200397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new additive Schwarz preconditioner for the Finite Element Tearing and Interconnecting (FETI) method is analyzed in this paper. This preconditioner has the unique feature that the coefficient matrix of its "coarse grid" problem is mesh independent. For a model second order heterogeneous elliptic boundary value problem in two dimension,,the condition number of the preconditioned system is shown to be bounded by C [1 + ln (H/h)](2), where h is the mesh size, H is the typical diameter of the subdomains, and the constant C is independent of h, H, the number of subdomains and the coefficients of the boundary value problem.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条
[1]  
[Anonymous], CONT MATH
[2]  
Bhardwaj M, 2000, INT J NUMER METH ENG, V47, P513, DOI 10.1002/(SICI)1097-0207(20000110/30)47:1/3<513::AID-NME782>3.0.CO
[3]  
2-V
[4]  
BJORCK A, 1996, NUMEICAL METHODS LEA
[5]  
BJORSTAD PE, 1991, BIT, V31, P76, DOI 10.1007/BF01952785
[6]  
BRAMBLE JH, 1986, MATH COMPUT, V47, P103, DOI 10.1090/S0025-5718-1986-0842125-3
[7]  
BRENNER SC, 2000, E W J NUMER MATH, V8, P83
[8]  
Chan T.F., 1994, Acta Numerica, V3, P61, DOI [DOI 10.1017/S0962492900002427, 10.1017/S0962492900002427]
[9]  
DRYJA M, 1990, THIRD INTERNATIONAL SYMPOSIUM ON DOMAIN DECOMPOSITION METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, P3
[10]   SCHWARZ METHODS OF NEUMANN-NEUMANN TYPE FOR 3-DIMENSIONAL ELLIPTIC FINITE-ELEMENT PROBLEMS [J].
DRYJA, M ;
WIDLUND, OB .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (02) :121-155