Functional and electrophysiological changes after graded traumatic spinal cord injury in adult rat

被引:137
作者
Cao, QL
Zhang, YP
Iannotti, C
DeVries, WH
Xu, XM
Shields, CB
Whittemore, SR
机构
[1] Univ Louisville, Sch Med, Dept Neurol Surg, Kentucky Spinal Cord Injury Res Ctr, Louisville, KY 40202 USA
[2] St Louis Univ, Sch Med, Dept Anat Sci & Neurobiol, St Louis, MO 63104 USA
[3] Univ Louisville, Sch Med, Dept Anat Sci & Neurobiol, Louisville, KY 40202 USA
关键词
demyelination; spinal cord injury; tcMMEP; locomotion; rat;
D O I
10.1016/j.expneurol.2004.08.026
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A graded contusion spinal cord injury (SCI) was created in the adult rat spinal cord using the Infinite Horizons (IH) impactor to study the correlation between injury severity and anatomical, behavioral, and clectrophysiological outcomes. Adult Fisher rats were equally divided into five groups and received contusion injuries at the ninth thoracic level (T9) with 100, 125, 150, 175, or 200 kdyn impact forces, respectively. Transcranial magnetic motor-evoked potentials (tcMMEPs) and 131313 open-field locomotor analyses were performed weekly for 4 weeks postinjury. Our results demonstrated that hindlimb locomotor function decreased in accordance with an increase in injury severity. The locomotor deficits were proportional to the amount of damage to the ventral and lateral white matter (WM). Locomotor function was strongly correlated to the amount of spared WM, which contains the reticulospinal and propriospinal tracts. Normal tcMMEP latencies were recorded in control, all of 100-kdyn-injured and half of 125-kdyn-injured animals. Delayed latency responses were recorded in some of 125-kdyn-injured and all of 150-kdyn-injured animals. No tcMMEP responses were recorded in 175- and 200-kdyn-injured animals. Comparison of tcMMEP responses with areas of WM loss or demyelination identified the medial ventrolateral funiculus (VLF) as the location of the tcMMEP pathway. Immunohistochemical and electromicroscopic (EM) analyses showed the presence of demyelinated axons in WM tracts surrounding the lesion cavities at 28 days postinjury. These data support the notion that widespread WM damage in the ventral and lateral funiculi may be a major cause for locomotor deficits and lack of tcMMEP responses after SCI. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:S3 / S16
页数:14
相关论文
共 66 条
[1]   EFFECTS OF SELECTIVE SPINAL-CORD LESIONS ON THE SPINAL MOTOR EVOKED-POTENTIAL (MEP) IN THE RAT [J].
ADAMSON, J ;
ZAPPULLA, RA ;
FRASER, A ;
RYDER, J ;
MALIS, LI .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1989, 74 (06) :469-480
[2]   Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord [J].
Akiyama, Y ;
Honmou, O ;
Kato, T ;
Uede, T ;
Hashi, K ;
Kocsis, JD .
EXPERIMENTAL NEUROLOGY, 2001, 167 (01) :27-39
[3]   A SENSITIVE AND RELIABLE LOCOMOTOR RATING-SCALE FOR OPEN-FIELD TESTING IN RATS [J].
BASSO, DM ;
BEATTIE, MS ;
BRESNAHAN, JC .
JOURNAL OF NEUROTRAUMA, 1995, 12 (01) :1-21
[4]   Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection [J].
Basso, DM ;
Beattie, MS ;
Bresnahan, JC .
EXPERIMENTAL NEUROLOGY, 1996, 139 (02) :244-256
[5]   ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury [J].
Beattie, MS ;
Harrington, AW ;
Lee, R ;
Kim, JY ;
Boyce, SL ;
Longo, FM ;
Bresnahan, JC ;
Hempstead, BL ;
Yoon, SO .
NEURON, 2002, 36 (03) :375-386
[6]   SPINAL-CORD INJURY PRODUCED BY CONSISTENT MECHANICAL DISPLACEMENT OF THE CORD IN RATS - BEHAVIORAL AND HISTOLOGIC ANALYSIS [J].
BEHRMANN, DL ;
BRESNAHAN, JC ;
BEATTIE, MS ;
SHAH, BR .
JOURNAL OF NEUROTRAUMA, 1992, 9 (03) :197-217
[7]  
Blight A R, 1985, Cent Nerv Syst Trauma, V2, P299
[8]   CELLULAR MORPHOLOGY OF CHRONIC SPINAL-CORD INJURY IN THE CAT - ANALYSIS OF MYELINATED AXONS BY LINE-SAMPLING [J].
BLIGHT, AR .
NEUROSCIENCE, 1983, 10 (02) :521-&
[9]   MORPHOMETRIC ANALYSIS OF EXPERIMENTAL SPINAL-CORD INJURY IN THE CAT - THE RELATION OF INJURY INTENSITY TO SURVIVAL OF MYELINATED AXONS [J].
BLIGHT, AR ;
DECRESCITO, V .
NEUROSCIENCE, 1986, 19 (01) :321-+
[10]   A BEHAVIORAL AND ANATOMICAL ANALYSIS OF SPINAL-CORD INJURY PRODUCED BY A FEEDBACK-CONTROLLED IMPACTION DEVICE [J].
BRESNAHAN, JC ;
BEATTIE, MS ;
TODD, FD ;
NOYES, DH .
EXPERIMENTAL NEUROLOGY, 1987, 95 (03) :548-570