On the Strong Solvability of the Navier-Stokes Equations

被引:158
作者
Amann, Herbert [1 ]
机构
[1] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
关键词
Weak; very weak; and strong solutions; existence and uniqueness theorems with rough initial data;
D O I
10.1007/s000210050018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the strong solvability of the Navier-Stokes equations for rough initial data. We prove that there exists essentially only one maximal strong solution and that various concepts of generalized solutions coincide. We also apply our results to Leray-Hopf weak solutions to get improvements over some known uniqueness and smoothness theorems. We deal with rather general domains including, in particular, those having compact boundaries.
引用
收藏
页码:16 / 98
页数:83
相关论文
共 84 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[3]  
Amann H., 1990, Differ. Integr. Equations, V3, P13, DOI [10.57262/die/1371586185, DOI 10.57262/DIE/1371586185]
[4]  
Amann H., 1984, Annali della Scuola Normale Superiore di Pisa, V11, P593
[5]  
Amann H., 1995, Abstract Linear Theory, Monographs inMathematics, V89, DOI DOI 10.1007/978-3-0348-9221-6
[6]  
[Anonymous], MATH RES
[7]   ON THE SEMIGROUP OF THE STOKES OPERATOR FOR EXTERIOR DOMAINS IN LQ-SPACES [J].
BORCHERS, W ;
SOHR, H .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (03) :415-425
[8]   L2 DECAY FOR THE NAVIER-STOKES FLOW IN HALFSPACES [J].
BORCHERS, W ;
MIYAKAWA, T .
MATHEMATISCHE ANNALEN, 1988, 282 (01) :139-155
[9]   ON THE SPECTRAL THEORY OF ELLIPTIC DIFFERENTIAL OPERATORS .1. [J].
BROWDER, FE .
MATHEMATISCHE ANNALEN, 1961, 142 (01) :22-130
[10]   INITIAL VALUES OF SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CALDERON, CP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (03) :761-766