Realization of quantum error correction

被引:387
作者
Chiaverini, J [1 ]
Leibfried, D
Schaetz, T
Barrett, MD
Blakestad, RB
Britton, J
Itano, WM
Jost, JD
Knill, E
Langer, C
Ozeri, R
Wineland, DJ
机构
[1] NIST, Div Time & Frequency, Boulder, CO 80305 USA
[2] NIST, Math & Computat Sci Div, Boulder, CO 80305 USA
基金
美国国家航空航天局;
关键词
D O I
10.1038/nature03074
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Scalable quantum computation(1) and communication require error control to protect quantum information against unavoidable noise. Quantum error correction(2,3) protects information stored in two-level quantum systems (qubits) by rectifying errors with operations conditioned on the measurement outcomes. Error-correction protocols have been implemented in nuclear magnetic resonance experiments(4-6), but the inherent limitations of this technique(7) prevent its application to quantum information processing. Here we experimentally demonstrate quantum error correction using three beryllium atomic-ion qubits confined to a linear, multi-zone trap. An encoded one-qubit state is protected against spin-flip errors by means of a three-qubit quantum error-correcting code. A primary ion qubit is prepared in an initial state, which is then encoded into an entangled state of three physical qubits (the primary and two ancilla qubits). Errors are induced simultaneously in all qubits at various rates. The encoded state is decoded back to the primary ion one-qubit state, making error information available on the ancilla ions, which are separated from the primary ion and measured. Finally, the primary qubit state is corrected on the basis of the ancillae measurement outcome. We verify error correction by comparing the corrected final state to the uncorrected state and to the initial state. In principle, the approach enables a quantum state to be maintained by means of repeated error correction, an important step towards scalable fault-tolerant quantum computation using trapped ions.
引用
收藏
页码:602 / 605
页数:4
相关论文
共 21 条
[1]   Deterministic quantum teleportation of atomic qubits [J].
Barrett, MD ;
Chiaverini, J ;
Schaetz, T ;
Britton, J ;
Itano, WM ;
Jost, JD ;
Knill, E ;
Langer, C ;
Leibfried, D ;
Ozeri, R ;
Wineland, DJ .
NATURE, 2004, 429 (6993) :737-739
[2]   Observation of entanglement between a single trapped atom and a single photon [J].
Blinov, BB ;
Moehring, DL ;
Duan, LM ;
Monroe, C .
NATURE, 2004, 428 (6979) :153-157
[3]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[4]   Experimental quantum error correction [J].
Cory, DG ;
Price, MD ;
Maas, W ;
Knill, E ;
Laflamme, R ;
Zurek, WH ;
Havel, TF ;
Somaroo, SS .
PHYSICAL REVIEW LETTERS, 1998, 81 (10) :2152-2155
[5]  
Cory DG, 2000, FORTSCHR PHYS, V48, P875, DOI 10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO
[6]  
2-V
[7]   Cooling the collective motion of trapped ions to initialize a quantum register [J].
King, BE ;
Wood, CS ;
Myatt, CJ ;
Turchette, QA ;
Leibfried, D ;
Itano, WM ;
Monroe, C ;
Wineland, DJ .
PHYSICAL REVIEW LETTERS, 1998, 81 (07) :1525-1528
[8]   Benchmarking quantum computers: The five-qubit error correcting code [J].
Knill, E ;
Laflamme, R ;
Martinez, R ;
Negrevergne, C .
PHYSICAL REVIEW LETTERS, 2001, 86 (25) :5811-5814
[9]   Toward Heisenberg-limited spectroscopy with multiparticle entangled states [J].
Leibfried, D ;
Barrett, MD ;
Schaetz, T ;
Britton, J ;
Chiaverini, J ;
Itano, WM ;
Jost, JD ;
Langer, C ;
Wineland, DJ .
SCIENCE, 2004, 304 (5676) :1476-1478
[10]   Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate [J].
Leibfried, D ;
DeMarco, B ;
Meyer, V ;
Lucas, D ;
Barrett, M ;
Britton, J ;
Itano, WM ;
Jelenkovic, B ;
Langer, C ;
Rosenband, T ;
Wineland, DJ .
NATURE, 2003, 422 (6930) :412-415