Test models for improving filtering with model errors through stochastic parameter estimation

被引:52
作者
Gershgorin, B. [2 ,3 ]
Harlim, J. [1 ]
Majda, A. J. [2 ,3 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] NYU, Dept Math, New York, NY 10012 USA
[3] NYU, Courant Inst Math Sci, Ctr Atmosphere & Ocean Sci, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
Stochastic parameter estimation; Kalman filter; Filtering turbulence; Data assimilation; Model error; DATA ASSIMILATION; DYNAMICAL-SYSTEMS; COMPLEX-SYSTEMS; FORECAST BIAS; CRITERIA; STATE;
D O I
10.1016/j.jcp.2009.08.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 33 条
[1]  
Anderson B.D.O., 1979, Optimal Filtering
[2]   An adaptive covariance inflation error correction algorithm for ensemble filters [J].
Anderson, Jeffrey L. .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2007, 59 (02) :210-224
[3]  
[Anonymous], 1997, HDB STOCHASTIC METHO
[4]   Local ensemble Kalman filtering in the presence of model bias [J].
Baek, SJ ;
Hunt, BR ;
Kalnay, E ;
Ott, E ;
Szunyogh, I .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2006, 58 (03) :293-306
[5]  
Bensoussan A., 2004, Stochastic control of partially observable systems
[6]  
Carton JA, 2000, J PHYS OCEANOGR, V30, P294, DOI 10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO
[7]  
2
[8]   Mathematical test criteria for filtering complex systems: Plentiful observations [J].
Castronovo, E. ;
Harlim, J. ;
Majda, A. J. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (07) :3678-3714
[9]   Bayesian state and parameter estimation of uncertain dynamical systems [J].
Ching, JY ;
Beck, JL ;
Porter, KA .
PROBABILISTIC ENGINEERING MECHANICS, 2006, 21 (01) :81-96
[10]  
Chui C.K., 1999, KALMAN FILTERING