Identification of a transient excision intermediate at the crossroads between DNA polymerase extension and proofreading pathways

被引:47
作者
Baker, RP [1 ]
Reha-Krantz, LJ [1 ]
机构
[1] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada
关键词
D O I
10.1073/pnas.95.7.3507
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA polymerases achieve accurate DNA replication through a delicate balance between primer elongation and proofreading, While insufficient proofreading results in DNA replication errors, indiscriminate removal of correct along with incorrect nucleotides is wasteful and may prevent completion of DNA synthesis, The transition between polymerization and proofreading modes is proposed to be governed by a kinetic barrier that prevents proofreading unless the rate of primer elongation is significantly reduced by the presence of an incorrect base pair at the primer-terminus. We have used mutational analysis, coupled with a sensitive, fluorescence-based assay to characterize intermediate steps in the proofreading pathway, A highly fluorescent complex forms between the bacteriophage T4 DNA polymerase and DNA primer-templates labeled at the 3' terminus with the base analog: 2-aminopurine. Formation of the fluorescent complex appears to be a rate-determining step in the proofreading pathway and is impaired for several mutator T4 DNA polymerases with amino acid substitutions in the exonuclease domain, Although these mutant DNA polymerases are proficient in hydrolysis, their reduced ability to form the fluorescent complex imposes a higher kinetic barrier, As a consequence, the mutant DNA polymerases proofread less frequently, resulting in more DNA replication errors.
引用
收藏
页码:3507 / 3512
页数:6
相关论文
共 30 条
[1]   STRUCTURAL BASIS FOR THE 3'-5' EXONUCLEASE ACTIVITY OF ESCHERICHIA-COLI DNA-POLYMERASE-I - A 2 METAL-ION MECHANISM [J].
BEESE, LS ;
STEITZ, TA .
EMBO JOURNAL, 1991, 10 (01) :25-33
[2]   STUDIES ON BIOCHEMICAL BASIS OF SPONTANEOUS MUTATION .5. EFFECT OF TEMPERATURE ON MUTATION FREQUENCY [J].
BESSMAN, MJ ;
REHAKRANTZ, LJ .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 116 (01) :115-123
[3]   EVIDENCE FAVORING THE HYPOTHESIS OF A CONSERVED 3'-5' EXONUCLEASE ACTIVE-SITE IN DNA-DEPENDENT DNA-POLYMERASES [J].
BLANCO, L ;
BERNAD, A ;
SALAS, M .
GENE, 1992, 112 (01) :139-144
[4]   PRE-STEADY-STATE KINETIC-ANALYSIS OF SEQUENCE-DEPENDENT NUCLEOTIDE EXCISION BY THE 3'-EXONUCLEASE ACTIVITY OF BACTERIOPHAGE-T4 DNA-POLYMERASE [J].
BLOOM, LB ;
OTTO, MR ;
ERITJA, R ;
REHAKRANTZ, LJ ;
GOODMAN, MF ;
BEECHEM, JM .
BIOCHEMISTRY, 1994, 33 (24) :7576-7586
[5]   3'-PHOSPHATASE ACTIVITY IN T4 POLYNUCLEOTIDE KINASE [J].
CAMERON, V ;
UHLENBECK, OC .
BIOCHEMISTRY, 1977, 16 (23) :5120-5126
[6]   KINETIC CHARACTERIZATION OF THE POLYMERASE AND EXONUCLEASE ACTIVITIES OF THE GENE-43 PROTEIN OF BACTERIOPHAGE-T4 [J].
CAPSON, TL ;
PELISKA, JA ;
KABOORD, BF ;
FREY, MW ;
LIVELY, C ;
DAHLBERG, M ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1992, 31 (45) :10984-10994
[7]   PROOFREADING DNA - RECOGNITION OF ABERRANT DNA TERMINI BY THE KLENOW FRAGMENT OF DNA-POLYMERASE-I [J].
CARVER, TE ;
HOCHSTRASSER, RA ;
MILLAR, DP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (22) :10670-10674
[8]   DNA SUBSTRATE STRUCTURAL REQUIREMENTS FOR THE EXONUCLEASE AND POLYMERASE ACTIVITIES OF PROCARYOTIC AND PHAGE DNA-POLYMERASES [J].
COWART, M ;
GIBSON, KJ ;
ALLEN, DJ ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1989, 28 (05) :1975-1983
[9]   THE 3'-5' EXONUCLEASE OF DNA-POLYMERASE-I OF ESCHERICHIA-COLI - CONTRIBUTION OF EACH AMINO-ACID AT THE ACTIVE-SITE TO THE REACTION [J].
DERBYSHIRE, V ;
GRINDLEY, NDF ;
JOYCE, CM .
EMBO JOURNAL, 1991, 10 (01) :17-24
[10]   GENETIC AND CRYSTALLOGRAPHIC STUDIES OF THE 3',5'-EXONUCLEOLYTIC SITE OF DNA-POLYMERASE-I [J].
DERBYSHIRE, V ;
FREEMONT, PS ;
SANDERSON, MR ;
BEESE, L ;
FRIEDMAN, JM ;
JOYCE, CM ;
STEITZ, TA .
SCIENCE, 1988, 240 (4849) :199-201