Benchmark atomization energy of ethane: Importance of accurate zero-point vibrational energies and diagonal Born-Oppenheimer corrections for a 'simple' organic molecule

被引:56
作者
Karton, Amir
Ruscic, Branko
Martin, Jan M. L. [1 ]
机构
[1] Weizmann Inst Sci, Dept Organ Chem, IL-76100 Rehovot, Israel
[2] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA
来源
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM | 2007年 / 811卷 / 1-3期
基金
以色列科学基金会;
关键词
thermochemistry; W4; theory; ethane; ab initio; diagonal Born-Oppenheimer correction; Active Thermochemical Tables;
D O I
10.1016/j.theochem.2007.01.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A benchmark calculation of the atomization energy of the 'simple' organic molecule C2H6 (ethane) has been carried out by means of W4 theory. While the molecule is straightforward in terms of one-particle and n-particle basis set convergence, its large zero-point vibrational energy (and anharmonic correction thereto) and nontrivial diagonal Born-Oppenheimer correction (DBOC) represent interesting challenges. For the W4 set of molecules and C2H6, we show that DBOCs to the total atomization energy are systematically overestimated at the SCF level, and that the correlation correction converges very rapidly with the basis set. Thus, even at the CISD/cc-pVDZ level, useful correlation corrections to the DBOC are obtained. When applying such a correction, overall agreement with experiment was only marginally improved, but a more significant improvement is seen when hydrogen-containing systems are considered in isolation. We conclude that for closed-shell organic molecules, the greatest obstacles to highly accurate computational thermochemistry may not lie in the solution of the clamped-nuclei Schrodinger equation, but rather in the zero-point vibrational energy and the diagonal Born-Oppenheimer correction. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:345 / 353
页数:9
相关论文
共 72 条
[1]   NONITERATIVE 5TH-ORDER TRIPLE AND QUADRUPLE EXCITATION-ENERGY CORRECTIONS IN CORRELATED METHODS [J].
BARTLETT, RJ ;
WATTS, JD ;
KUCHARSKI, SA ;
NOGA, J .
CHEMICAL PHYSICS LETTERS, 1990, 165 (06) :513-522
[2]  
BARTLETT RJ, 1995, MODERN ELECT STRUCTU, V2, P1047
[3]   RIGOROUS THEORETICAL INVESTIGATION OF GROUND-STATE OF H-2 [J].
BISHOP, DM ;
CHEUNG, LM .
PHYSICAL REVIEW A, 1978, 18 (05) :1846-1852
[4]   Anharmonic force fields and thermodynamic functions using density functional theory [J].
Boese, AD ;
Klopper, W ;
Martin, JML .
MOLECULAR PHYSICS, 2005, 103 (6-8) :863-876
[5]   Vibrational spectra of the azabenzenes revisited: Anharmonic force fields [J].
Boese, AD ;
Martin, JML .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (15) :3085-3096
[6]   W3 theory:: Robust computational thermochemistry in the kJ/mol accuracy range [J].
Boese, AD ;
Oren, M ;
Atasoylu, O ;
Martin, JML ;
Kállay, M ;
Gauss, J .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (09) :4129-4141
[7]   High-accuracy extrapolated ab initio thermochemistry.: II.: Minor improvements to the protocol and a vital simplification [J].
Bomble, Yannick J. ;
Vazquez, Juana ;
Kallay, Mihaly ;
Michauk, Christine ;
Szalay, Peter G. ;
Csaszar, Attila G. ;
Gauss, Juergen ;
Stanton, John F. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (06)
[8]   Coupled-cluster methods including noniterative corrections for quadruple excitations -: art. no. 054101 [J].
Bomble, YJ ;
Stanton, JF ;
Kállay, M ;
Gauss, J .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (05)
[9]  
Cioslowski J, 2001, QUANTUM MECH PREDICT
[10]  
Cox J.D., 1989, CODATA KEY VALUES TH