Compacton solutions for a class of two parameter generalized odd-order Korteweg-de Vries equations

被引:42
作者
Dey, B [1 ]
机构
[1] Univ Poona, Dept Phys, Poona 411007, Maharashtra, India
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 04期
关键词
D O I
10.1103/PhysRevE.57.4733
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the fifth-order fully nonlinear K(m,n,p) equations and obtain a class of exact compacton solutions. We find that addition of the fifth-order dispersion term increases the range of the nonlinear parameters m, n, and p for which these compacton solutions are allowed. We consider the Hamiltonian structure and conservation laws of this class of equations. We also study the class of two parameter generalized odd-order equations and obtain the exact compacton solutions and the range of the nonlinearity and dispersion parameters as well as the relation between them.
引用
收藏
页码:4733 / 4738
页数:6
相关论文
共 7 条
[1]   SOLITARY WAVES IN A CLASS OF GENERALIZED KORTEWEG-DEVRIES EQUATIONS [J].
COOPER, F ;
SHEPARD, H ;
SODANO, P .
PHYSICAL REVIEW E, 1993, 48 (05) :4027-4032
[2]   Stationary solitons of the fifth order KdV-type. Equations and their stabilization [J].
Dey, B ;
Khare, A ;
Kumar, CN .
PHYSICS LETTERS A, 1996, 223 (06) :449-452
[3]   Stabilization of soliton instabilities by higher order dispersion: KdV-type equations [J].
Karpman, VI .
PHYSICS LETTERS A, 1996, 210 (1-2) :77-84
[4]   ONE-PARAMETER FAMILY OF SOLITON-SOLUTIONS WITH COMPACT SUPPORT IN A CLASS OF GENERALIZED KORTEWEG-DE VRIES EQUATIONS [J].
KHARE, A ;
COOPER, F .
PHYSICAL REVIEW E, 1993, 48 (06) :4843-4844
[5]   COMPACTONS - SOLITONS WITH FINITE WAVELENGTH [J].
ROSENAU, P ;
HYMAN, JM .
PHYSICAL REVIEW LETTERS, 1993, 70 (05) :564-567
[6]   EXACT SOLITARY WAVE SOLUTIONS TO A CLASS OF GENERALIZED ODD-ORDER KDV EQUATIONS [J].
YANG, ZJ .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (04) :641-647
[7]   INTERACTION OF SOLITONS IN A COLLISIONLESS PLASMA AND RECURRENCE OF INITIAL STATES [J].
ZABUSKY, NJ ;
KRUSKAL, MD .
PHYSICAL REVIEW LETTERS, 1965, 15 (06) :240-&