Overdamped diffusion in coupled potentials

被引:2
作者
Caratti, G
Ferrando, R
Spadacini, R
Tommei, GE
机构
[1] Univ Genoa, Ist Nazl Fis Mat, I-16146 Genoa, Italy
[2] Univ Genoa, Dipartimento Fis, CNR, Ctr Fis Superfici & Basse Temp, I-16146 Genoa, Italy
关键词
D O I
10.1142/S0218625X97000894
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An analytical "quasi-2D" approximation (Q2DA) for the diffusion coefficient of an adatom migrating in a rectangular lattice, in the presence of a high damping and of a general 2D-coupled potential, is derived. The validity of the Q2DA lies on the assumption that all the most relevant diffusion paths can be treated as straight lines. That is the case of the square 2D-coupled egg-carton potential, where the Q2DA is applied. Comparison with the exact numerical results (2D Smoluchowski equation) shows that the Q2DA provides a very good approximation of the diffusion constant even in the strongest coupling situations.
引用
收藏
页码:847 / 850
页数:4
相关论文
共 20 条
[1]   THEORY OF CLASSICAL SURFACE-DIFFUSION [J].
ALANISSILA, T ;
YING, SC .
PROGRESS IN SURFACE SCIENCE, 1992, 39 (03) :227-323
[2]   UNIVERSAL PROPERTIES OF CLASSICAL SURFACE-DIFFUSION [J].
ALANISSILA, T ;
YING, SC .
PHYSICAL REVIEW LETTERS, 1990, 65 (07) :879-882
[3]  
CARATTI G, UNPUB
[4]   DYNAMICS OF MOLECULAR-SURFACE DIFFUSION - ORIGINS AND CONSEQUENCES OF LONG JUMPS [J].
DOBBS, KD ;
DOREN, DJ .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (05) :3722-3735
[5]  
DOLL JD, 1987, ANNU REV PHYS CHEM, V38, P413, DOI 10.1146/annurev.physchem.38.1.413
[6]   DIRECT OBSERVATIONS OF THE SURFACE-DIFFUSION OF ATOMS AND CLUSTERS [J].
EHRLICH, G .
SURFACE SCIENCE, 1991, 246 (1-3) :1-12
[7]  
EHRLICH G, 1980, ANNU REV PHYS CHEM, V31, P63
[8]   CORRELATION-FUNCTIONS IN SURFACE-DIFFUSION - THE MULTIPLE-JUMP REGIME [J].
FERRANDO, R ;
SPADACINI, R ;
TOMMEI, GE ;
CARATTI, G .
SURFACE SCIENCE, 1994, 311 (03) :411-421
[9]   KRAMERS PROBLEM IN PERIODIC POTENTIALS - JUMP RATE AND JUMP LENGTHS [J].
FERRANDO, R ;
SPADACINI, R ;
TOMMEI, GE .
PHYSICAL REVIEW E, 1993, 48 (04) :2437-2451
[10]   TIME SCALES AND DIFFUSION MECHANISMS IN THE KRAMERS EQUATION WITH PERIODIC POTENTIALS (I) [J].
FERRANDO, R ;
SPADACINI, R ;
TOMMEI, GE ;
CARATTI, G .
PHYSICA A, 1993, 195 (3-4) :506-532