Quantum repeaters with entangled coherent states

被引:78
作者
Sangouard, Nicolas [1 ,2 ]
Simon, Christoph [1 ,3 ,4 ]
Gisin, Nicolas [1 ]
Laurat, Julien [5 ]
Tualle-Brouri, Rosa [6 ]
Grangier, Philippe [6 ]
机构
[1] Univ Geneva, Grp Appl Phys Opt, CH-1211 Geneva 4, Switzerland
[2] Univ Paris Diderot, UMR 7162, CNRS, F-75013 Paris, France
[3] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB T2N 1N4, Canada
[4] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada
[5] Univ Paris 06, Ecole Normale Super, Lab Kastler Brossel, CNRS, F-75252 Paris 05, France
[6] Univ Paris 11, CNRS, UMR 8501, Inst Opt,Lab Charles Fabry, F-91127 Palaiseau, France
关键词
ATOMIC ENSEMBLES; COMMUNICATION;
D O I
10.1364/JOSAB.27.00A137
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Entangled coherent states can be prepared remotely by subtracting nonlocally a single photon from two quantum superpositions of coherent states, the so-called "Schrodinger's cat" state. Such entanglement can further be distributed over longer distances by successive entanglement swapping operations using linear optics and photon-number resolving detectors. The aim of this paper is to evaluate the performance of this approach to quantum repeaters for long-distance quantum communications. Despite many attractive features at first sight, we show that, when using state-of-the-art photon counters and quantum memories, they do not achieve higher entanglement generation rates than repeaters based on single-photon entanglement. We discuss potential developments, which may take better advantage of the richness of entanglement based on continuous variables, including in particular efficient parity measurements. (C) 2010 Optical Society of America
引用
收藏
页码:A137 / A145
页数:9
相关论文
共 37 条
[1]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[2]   Maximum efficiency of a linear-optical Bell-state analyzer [J].
Calsamiglia, J ;
Lütkenhaus, N .
APPLIED PHYSICS B-LASERS AND OPTICS, 2001, 72 (01) :67-71
[3]  
CERF N, QUANTUM INFORM CONTI
[4]   Fault-tolerant quantum repeater with atomic ensembles and linear optics [J].
Chen, Zeng-Bing ;
Zhao, Bo ;
Chen, Yu-Ao ;
Schmiedmayer, Joerg ;
Pan, Jian-Wei .
PHYSICAL REVIEW A, 2007, 76 (02)
[5]   Fault-tolerant quantum communication based on solid-state photon emitters [J].
Childress, L ;
Taylor, JM ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW LETTERS, 2006, 96 (07) :1-4
[6]   Functional quantum nodes for entanglement distribution over scalable quantum networks [J].
Chou, Chin-Wen ;
Laurat, Julien ;
Deng, Hui ;
Choi, Kyung Soo ;
de Riedmatten, Hugues ;
Felinto, Daniel ;
Kimble, H. Jeff .
SCIENCE, 2007, 316 (5829) :1316-1320
[7]   Long-distance quantum communication with atomic ensembles and linear optics [J].
Duan, LM ;
Lukin, MD ;
Cirac, JI ;
Zoller, P .
NATURE, 2001, 414 (6862) :413-418
[8]   Unconditional quantum teleportation [J].
Furusawa, A ;
Sorensen, JL ;
Braunstein, SL ;
Fuchs, CA ;
Kimble, HJ ;
Polzik, ES .
SCIENCE, 1998, 282 (5389) :706-709
[9]  
HIROTA O, ARXIVQUANTPH0101018
[10]  
JEONG H, QUANTUM INFORM CONTI, pCH9