Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem

被引:112
作者
Beckett, G [1 ]
Mackenzie, JA [1 ]
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
关键词
uniform convergence; adaptivity; equidistribution; singular perturbation; upwind scheme;
D O I
10.1016/S0168-9274(99)00065-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive epsilon-uniform error estimates for two first-order upwind discretizations of a model inhomogeneous, second-order, singularly perturbed boundary value problem on a non-uniform grid. Here, epsilon is the small parameter multiplying the highest derivative term. The grid is suggested by the equidistribution of a positive monitor function which is a linear combination of a constant floor and a power of the second derivative of the solution. Our analysis shows how the floor should be chosen to ensure epsilon-uniform convergence and indicates the convergence behaviour for such grids. Numerical results are presented which confirm the epsilon-uniform convergence rates. (C) 2000 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:87 / 109
页数:23
相关论文
共 24 条
[1]   DIFFERENCE APPROXIMATIONS FOR SINGULAR PERTURBATIONS OF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS [J].
ABRAHAMSSON, LR ;
KELLER, HB ;
KREISS, HO .
NUMERISCHE MATHEMATIK, 1974, 22 (05) :367-391
[2]  
[Anonymous], 1974, LECT NOTES MATH
[3]  
[Anonymous], 1995, FITTED NUMERICAL MET
[4]  
BAKHVALOV NS, 1969, USSR COMP MATH MATH+, V9, P841
[5]  
BECKETT G, 1997, 30 STRATHCL U MATH D
[6]   GRADING FUNCTIONS AND MESH REDISTRIBUTION [J].
CAREY, GF ;
DINH, HT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (05) :1028-1040
[7]  
Fornberg B., 1996, A Practical Guide to Pseudospectral Methods
[8]  
GARTLAND EC, 1988, MATH COMPUT, V51, P631, DOI 10.1090/S0025-5718-1988-0935072-1
[9]  
Ilin AM, 1969, MAT ZAMETKI, V6, P237, DOI DOI 10.1007/BF01093706
[10]  
KELLOGG RB, 1978, MATH COMPUT, V32, P1025, DOI 10.1090/S0025-5718-1978-0483484-9