Induction of hypersensitive cell death by a fungal protein in cultures of tobacco cells

被引:79
作者
Yano, A
Suzuki, K
Uchimiya, H
Shinshi, H
机构
[1] Natl Inst Biosci & Human Technol, Plant Mol Biol Lab, Tsukuba, Ibaraki 305, Japan
[2] Univ Tokyo, Inst Mol & Cellular Biosci, Bunkyo Ku, Tokyo 113, Japan
关键词
D O I
10.1094/MPMI.1998.11.2.115
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Treatment of suspension-cultured tobacco (Nicotiana tabacum cv. Xanthi) cells (Line XD6S) with fungal proteinaceous elicitors, namely, xylanase (EC 3.2.1.8) from Trichoderma viride (TvX) and xylanase from T. reesei (TrX), induced shrinkage of the cytoplasm, condensation of the nucleus, and, finally, cell death, which were accompanied by typical defense responses that included an oxidative burst and expression of defense genes. A Ca2+ channel blocker, Gd3+, inhibited the Epical response of XD6S cells to TvX, which resembled the hypersensitive reaction (HR). These results suggested that the influx of Ca2+ ions plays an important role as a secondary signal. The HR was not observed in TvX-treated tobacco cells (line BY-2) derived from cv. Bright Yellow 2. This result suggests that key features of cultivar-specific interaction can be observed in cultures of tobacco cells. Xylanase from Bacillus circulans (BcX) and B. subtilis (BsX), which has enzymatic properties similar to those of TvX but an amino acid sequence different from that of TvX, did not induce the HR-like response in XD6S cells. These results suggest that the elicitor action of TvX is not due to its ability to hydrolyze cell walls but requires the TvX-specific recognition factors in plant cells. Thus, TvX-induced cell death was not due to some general toxic effect, but seems to be mediated by the activation of a specific cellular signal-transduction cascade that converges with a pathway that activates the intracellular cell death program.
引用
收藏
页码:115 / 123
页数:9
相关论文
共 59 条
[1]   POPA1, A PROTEIN WHICH INDUCES A HYPERSENSITIVITY-LIKE RESPONSE ON SPECIFIC PETUNIA GENOTYPES, IS SECRETED VIA THE HRP PATHWAY OF PSEUDOMONAS-SOLANACEARUM [J].
ARLAT, M ;
VANGIJSEGEM, F ;
HUET, JC ;
PERNOLLET, JC ;
BOUCHER, CA .
EMBO JOURNAL, 1994, 13 (03) :543-553
[2]   INVOLVEMENT OF PLASMA-MEMBRANE CALCIUM INFLUX IN BACTERIAL INDUCTION OF THE K+/H+ AND HYPERSENSITIVE RESPONSES IN TOBACCO [J].
ATKINSON, MM ;
KEPPLER, LD ;
ORLANDI, EW ;
BAKER, CJ ;
MISCHKE, CF .
PLANT PHYSIOLOGY, 1990, 92 (01) :215-221
[3]   INDUCTION OF ETHYLENE BIOSYNTHESIS IN NICOTIANA-TABACUM BY A TRICHODERMA-VIRIDE XYLANASE IS CORRELATED TO THE ACCUMULATION OF 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID (ACC) SYNTHASE AND ACC OXIDASE TRANSCRIPTS [J].
AVNI, A ;
BAILEY, BA ;
MATTOO, AK ;
ANDERSON, JD .
PLANT PHYSIOLOGY, 1994, 106 (03) :1049-1055
[4]   AN ETHYLENE BIOSYNTHESIS-INDUCING ENDOXYLANASE ELICITS ELECTROLYTE LEAKAGE AND NECROSIS IN NICOTIANA-TABACUM CV XANTHI LEAVES [J].
BAILEY, BA ;
DEAN, JFD ;
ANDERSON, JD .
PLANT PHYSIOLOGY, 1990, 94 (04) :1849-1854
[5]   ALTERATIONS IN NICOTIANA-TABACUM-L CV XANTHI CELL-MEMBRANE FUNCTION FOLLOWING TREATMENT WITH AN ETHYLENE BIOSYNTHESIS-INDUCING ENDOXYLANASE [J].
BAILEY, BA ;
KORCAK, RF ;
ANDERSON, JD .
PLANT PHYSIOLOGY, 1992, 100 (02) :749-755
[6]   SENSITIVITY TO AN ETHYLENE BIOSYNTHESIS-INDUCING ENDOXYLANASE IN NICOTIANA-TABACUM-L CV XANTHI IS CONTROLLED BY A SINGLE DOMINANT GENE [J].
BAILEY, BA ;
KORCAK, RF ;
ANDERSON, JD .
PLANT PHYSIOLOGY, 1993, 101 (03) :1081-1088
[7]   A NEW ELICITOR OF THE HYPERSENSITIVE RESPONSE IN TOBACCO - A FUNGAL GLYCOPROTEIN ELICITS CELL-DEATH, EXPRESSION OF DEFENSE GENES, PRODUCTION OF SALICYLIC-ACID, AND INDUCTION OF SYSTEMIC ACQUIRED-RESISTANCE [J].
BAILLIEUL, F ;
GENETET, I ;
KOPP, M ;
SAINDRENAN, P ;
FRITIG, B ;
KAUFFMANN, S .
PLANT JOURNAL, 1995, 8 (04) :551-560
[8]   HARPIN, AN ELICITOR OF THE HYPERSENSITIVE RESPONSE IN TOBACCO CAUSED BY ERWINIA-AMYLOVORA, ELICITS ACTIVE OXYGEN PRODUCTION IN SUSPENSION CELLS [J].
BAKER, CJ ;
ORLANDI, EW ;
MOCK, NM .
PLANT PHYSIOLOGY, 1993, 102 (04) :1341-1344
[9]  
Bent AF, 1996, PLANT CELL, V8, P1757, DOI 10.1105/tpc.8.10.1757
[10]  
BIELY P, 1988, METHOD ENZYMOL, V160, P536