Multiply subtractive Kramers-Kronig relations for arbitrary-order harmonic generation susceptibilities

被引:29
作者
Lucarini, V [1 ]
Saarinen, JJ [1 ]
Peiponen, KE [1 ]
机构
[1] Univ Joensuu, Dept Phys, FIN-80101 Joensuu, Finland
关键词
D O I
10.1016/S0030-4018(03)01259-8
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Kramers-Kronig (K-K) analysis of harmonic generation optical data is usually greatly limited by the technical inability to measure data over a wide spectral range. Data inversion for real and imaginary part of chi(n) (nomega; omega,..., omega) can be more efficiently performed if the knowledge of one of the two parts of the susceptibility in a finite spectral range is supplemented with a single measurement of the other part for a given frequency. Then it is possible to perform data inversion using only measured data and subtractive K-K relations. In this paper multiply subtractive K-K relations are, for the first time, presented for the nonlinear harmonic generation susceptibilities. The applicability of the singly subtractive K-K relations are shown using data for third-order harmonic generation susceptibility of polysilane. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:409 / 414
页数:6
相关论文
共 28 条
[1]   MODIFIED KRAMERS-KRONIG ANALYSIS OF OPTICAL SPECTRA [J].
AHRENKIEL, RK .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1971, 61 (12) :1651-+
[2]   SUPERCONVERGENCE AND SUM-RULES FOR OPTICAL-CONSTANTS - PHYSICAL MEANING, COMPARISON WITH EXPERIMENT, AND GENERALIZATION [J].
ALTARELL.M ;
SMITH, DY .
PHYSICAL REVIEW B, 1974, 9 (04) :1290-1298
[3]   SUPERCONVERGENCE AND SUM-RULES FOR OPTICAL-CONSTANTS [J].
ALTARELLI, M ;
DEXTER, DL ;
NUSSENZVEIG, HM ;
SMITH, DY .
PHYSICAL REVIEW B, 1972, 6 (12) :4502-4509
[4]  
ARFKEN GB, 1995, MATH METHODS PHYSICI, P787
[5]  
ASPNES DE, 1985, HDB OPTICAL CONSTANT
[6]   General properties of optical harmonic generation from a simple oscillator model [J].
Bassani, F ;
Lucarini, V .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1998, 20 (7-8) :1117-1125
[7]   Pump and probe nonlinear processes: new modified sum rules from a simple oscillator model [J].
Bassani, F ;
Lucarini, V .
EUROPEAN PHYSICAL JOURNAL B, 1999, 12 (03) :323-330
[8]   Asymptotic behaviour and general properties of harmonic generation susceptibilities [J].
Bassani, F ;
Lucarini, V .
EUROPEAN PHYSICAL JOURNAL B, 2000, 17 (04) :567-573
[9]   DISPERSION-RELATIONS AND SUM-RULES IN NONLINEAR OPTICS [J].
BASSANI, F ;
SCANDOLO, S .
PHYSICAL REVIEW B, 1991, 44 (16) :8446-8453
[10]   DISPERSION RELATIONS FOR NONLINEAR RESPONSE [J].
CASPERS, WJ .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1964, 133 (5A) :1249-&