Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses

被引:82
作者
Griffith, DA
机构
[1] Syracuse Univ, Dept Geog, Syracuse, NY 13244 USA
[2] Syracuse Univ, Interdisciplinary Stat Program, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
eigenfunction; incidence matrix; spatial analysis; square tessellation; hexagonal tessellation; stochastic matrix;
D O I
10.1016/S0024-3795(00)00031-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Mathematical properties of eigenfunctions of selected incidence matrices appearing in spatial statistics formulae are summarized. Seven theorems are proposed and proved, and three conjectures are posited. Results summarized here allow the determinant of massively large n x n geographic weights matrices to be accurately approximated. In addition, the behavior of eigenfunctions for graphs affiliated with a linear configuration of connected nodes are better understood. (C) 2000 Elsevier Science Inc, All rights reserved.
引用
收藏
页码:95 / 112
页数:18
相关论文
共 31 条
[1]  
AHUJA N, 1983, PATTERN MODELS
[2]  
Allen R. G., 1998, FAO Irrigation and Drainage Paper
[3]   Some large-scale matrix computation problems [J].
Bai, ZJ ;
Fahey, M ;
Golub, G .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 74 (1-2) :71-89
[4]   Monte Carlo estimates of the log determinant of large sparse matrices [J].
Barry, RP ;
Pace, RK .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 289 (1-3) :41-54
[5]  
Basilevsky A., 1983, Applied Matrix Algebra in the Statistical Sciences
[6]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[7]  
Chatelin F., 1993, EIGENVALUES MATRICES
[8]  
Chung F. R. K., 1997, SPECTRAL GRAPH THEOR
[9]  
Cressie N, 1996, MASSIVE DATA SETS, P115
[10]  
Cressie N., 1993, STAT SPATIAL DATA, DOI [10.1002/9781119115151, DOI 10.1002/9781119115151]