Binary black holes on a budget:: simulations using workstations

被引:36
作者
Marronetti, Pedro [1 ]
Tichy, Wolfgang
Bruegmann, Bernd
Gonzalez, Jose
Hannam, Mark
Husa, Sascha
Sperhake, Ulrich
机构
[1] Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA
[2] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
关键词
D O I
10.1088/0264-9381/24/12/S05
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Binary black hole simulations have traditionally been computationally very expensive: current simulations are performed in supercomputers involving dozens if not hundreds of processors, thus systematic studies of the parameter space of binary black hole encounters still seem prohibitive with current technology. Here we show how the multi-layered refinement level code BAM can be used on dual processor workstations to simulate certain binary black hole systems. BAM, based on the moving punctures method, provides grid structures composed of boxes of increasing resolution near the centre of the grid. In the case of binaries, the highest resolution boxes are placed around each black hole and they track them in their orbits until the final merger when a single set of levels surrounds the black hole remnant. This is particularly useful when simulating spinning black holes since the gravitational fields gradients are larger. We present simulations of binaries with equal mass black holes with spins parallel to the binary axis and intrinsic magnitude of S/m(2) = 0.75. Our results compare favourably to those of previous simulations of this particular system. We show that the moving punctures method produces stable simulations at maximum spatial resolutions up to M/160 and for durations of up to the equivalent of 20 orbital periods.
引用
收藏
页码:S43 / S58
页数:16
相关论文
共 44 条
[1]  
ALCUBIERRE M, PHYS REV D, V67
[2]   Single-domain spectral method for black hole puncture data -: art. no. 064011 [J].
Ansorg, M ;
Brügmann, B ;
Tichy, W .
PHYSICAL REVIEW D, 2004, 70 (06) :13
[3]   Gravitational-wave extraction from an inspiraling configuration of merging black holes [J].
Baker, JG ;
Centrella, J ;
Choi, DI ;
Koppitz, M ;
van Meter, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[4]   Getting a kick out of numerical relativity [J].
Baker, John G. ;
Centrella, Joan ;
Choi, Dae-Il ;
Koppitz, Michael ;
van Meter, James R. ;
Miller, M. Coleman .
ASTROPHYSICAL JOURNAL, 2006, 653 (02) :L93-L96
[5]   Binary black hole merger dynamics and waveforms [J].
Baker, John G. ;
Centrella, Joan ;
Choi, Dae-Il ;
Koppitz, Michael ;
van Meter, James .
PHYSICAL REVIEW D, 2006, 73 (10)
[6]   Analytical representation of a black hole puncture solution [J].
Baumgarte, Thomas W. ;
Naculich, Stephen G. .
PHYSICAL REVIEW D, 2007, 75 (06)
[7]   Numerical integration of Einstein's field equations [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 59 (02)
[8]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[9]   TIME-ASYMMETRIC INITIAL DATA FOR BLACK-HOLES AND BLACK-HOLE COLLISIONS [J].
BOWEN, JM ;
YORK, JW .
PHYSICAL REVIEW D, 1980, 21 (08) :2047-2056
[10]   A simple construction of initial data for multiple black holes [J].
Brandt, S ;
Brugmann, B .
PHYSICAL REVIEW LETTERS, 1997, 78 (19) :3606-3609