Calculation of the dielectric permittivity profile for a nonuniform system: Application to a lipid bilayer simulation

被引:231
作者
Stern, HA [1 ]
Feller, SE
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[2] Wabash Coll, Dept Chem, Crawfordsville, IN 47933 USA
关键词
D O I
10.1063/1.1537244
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We derive an expression relating the static dielectric permittivity profile for a system nonuniform in one dimension to correlations between the net system dipole moment and the local polarization density. The permittivity profile of a dipalmitoylphosphatidylcholine (DPPC) lipid bilayer in water is calculated from an all-atom 20-ns molecular dynamics simulation. The component of the permittivity parallel to the bilayer shows a nonmonotonic decrease from the value in bulk water to the value in the membrane interior; the interfacial region itself has a very large permittivity, greater than that of bulk water. In high-dielectric regions, obtaining a quantitative estimate of the component normal to the bilayer is not possible because of large numerical uncertainty. However, the calculated correlation function is consistent with a value for the interface at least as large as that of bulk water. In general, the transition to a low-dielectric environment is sharp and is located on the inner border of the region where there is significant probability of finding the polar head groups. (C) 2003 American Institute of Physics.
引用
收藏
页码:3401 / 3412
页数:12
相关论文
共 102 条
[1]  
Allen M. P., 1987, COMPUTER SIMULATIONS, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]   ORIENTATION AND DIFFUSION OF A DRUG ANALOG IN BIOMEMBRANES - MOLECULAR-DYNAMICS SIMULATIONS [J].
ALPER, HE ;
STOUCH, TR .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (15) :5724-5731
[3]   THE MOLECULAR-ORGANIZATION OF BIMOLECULAR LIPID-MEMBRANES - THE DIELECTRIC STRUCTURE OF THE HYDROPHILIC-HYDROPHOBIC INTERFACE [J].
ASHCROFT, RG ;
COSTER, HGL ;
SMITH, JR .
BIOCHIMICA ET BIOPHYSICA ACTA, 1981, 643 (01) :191-204
[4]   Interfacing continuum and molecular dynamics: An application to lipid bilayers [J].
Ayton, G ;
Bardenhagen, SG ;
McMurtry, P ;
Sulsky, D ;
Voth, GA .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (15) :6913-6924
[5]   Parametrizing a polarizable force field from ab initio data.: I.: The fluctuating point charge model [J].
Banks, JL ;
Kaminski, GA ;
Zhou, RH ;
Mainz, DT ;
Berne, BJ ;
Friesner, RA .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (02) :741-754
[6]   SOLUTE DIFFUSION IN LIPID BILAYER-MEMBRANES - AN ATOMIC-LEVEL STUDY BY MOLECULAR-DYNAMICS SIMULATION [J].
BASSOLINOKLIMAS, D ;
ALPER, HE ;
STOUCH, TR .
BIOCHEMISTRY, 1993, 32 (47) :12624-12637
[7]   MECHANISM OF SOLUTE DIFFUSION THROUGH LIPID BILAYER-MEMBRANES BY MOLECULAR-DYNAMICS SIMULATION [J].
BASSOLINOKLIMAS, D ;
ALPER, HE ;
STOUCH, TR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (14) :4118-4129
[8]   Implicit solvent model studies of the interactions of the influenza hemagglutinin fusion peptide with lipid bilayers [J].
Bechor, D ;
Ben-Tal, N .
BIOPHYSICAL JOURNAL, 2001, 80 (02) :643-655
[9]   AN ANISOTROPIC POLARIZABLE WATER MODEL - INCORPORATION OF ALL-ATOM POLARIZABILITIES INTO MOLECULAR MECHANICS FORCE-FIELDS [J].
BERNARDO, DN ;
DING, YB ;
KROGHJESPERSEN, K ;
LEVY, RM .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (15) :4180-4187
[10]   Energetics of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
NATURE, 2001, 414 (6859) :73-77