WRN exonuclease activity is blocked by DNA termini harboring 3′ obstructive groups

被引:29
作者
Harrigan, Jeanine A.
Fan, Jinshui
Momand, Jamil
Perrino, Fred W.
Bohr, Vilhelm A. [1 ]
Wilson, David M., III
机构
[1] NIA, Lab Mol Gerontol, NIH, Baltimore, MD 21224 USA
[2] Calif State Univ Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90032 USA
[3] Wake Forest Univ, Dept Biochem, Winston Salem, NC 27157 USA
关键词
exonuclease; WRN; Werner syndrome; 3 ' damage repair; HUMAN APURINIC/APYRIMIDINIC ENDONUCLEASE; HUMAN APURINIC ENDONUCLEASE; WERNER-SYNDROME PROTEIN; MAJOR HUMAN; REPAIR; DAMAGE; TREX1; P53; 3'-PHOSPHOGLYCOLATE; EXPRESSION;
D O I
10.1016/j.mad.2006.12.005
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Reactive oxygen species, generated either by cellular respiration or upon exposure to environmental agents such as ionizing radiation (IR), attack DNA to form a variety of oxidized base and sugar modifications. Accumulation of oxidative DNA damage has been associated with age-related disease as well as the aging process. Single-strand breaks harboring oxidative 3' obstructive termini, e.g. 3' phosphates and 3' phosphoglycolates, must be removed prior to DNA repair synthesis or ligation. In addition, 3' tyrosyl-linked protein damage, resulting from therapeutic agents such as camptothecin (CPT), must be processed to initiate repair. Several nucleases participate in DNA repair and the excision of 3' obstructive ends. As the protein defective in the segmental progeroid Werner syndrome (WRN) possesses 3'-5' exonuclease activity, and Werner syndrome cells are hypersensitive to IR and CPT, we examined for WRN exonuclease activity on 3' blocking lesions. Moreover, we compared side-by-side the activity of four prominent human 3'-5' exonucleases (WRN, APE1, TREX1, and p53) on substrates containing 3' phosphates, phosphoglycolates, and tyrosyl residues. Our studies reveal that while WRN degrades 3' hydroxyl containing substrates in a non-processive manner, it does not excise 3' phosphate, phosphoglycolate, or tyrosyl groups. In addition, we found that APE1 was most active at excising 3' blocking termini in comparison to the disease-related exonucleases TREX1, WRN, and p53 under identical physiological reaction conditions, and that TREX1 was the most powerful 3'-5' exonuclease on undamaged oligonucleotide substrates. Published by Elsevier Ireland Ltd.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 63 条
[1]   OXIDANTS ARE A MAJOR CONTRIBUTOR TO AGING [J].
AMES, BN ;
SHIGENAGA, MK .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES-SERIES, 1992, 663 :85-96
[2]   Exonucleolytic proofreading by p53 protein [J].
Bakhanashvili, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (07) :2047-2054
[3]   DNA TOPOISOMERASES - ESSENTIAL ENZYMES AND LETHAL TARGETS [J].
CHEN, AY ;
LIU, LF .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1994, 34 :191-218
[4]   2 DISTINCT HUMAN DNA DIESTERASES THAT HYDROLYZE 3'-BLOCKING DEOXYRIBOSE FRAGMENTS FROM OXIDIZED DNA [J].
CHEN, DS ;
HERMAN, T ;
DEMPLE, B .
NUCLEIC ACIDS RESEARCH, 1991, 19 (21) :5907-5914
[5]   An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3′ mispaired DNA [J].
Chou, KM ;
Cheng, YC .
NATURE, 2002, 415 (6872) :655-659
[6]   The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death [J].
Chowdhury, Dipanjan ;
Beresford, Paul J. ;
Zhu, Pengcheng ;
Zhang, Dong ;
Sung, Jung-Suk ;
Demple, Bruce ;
Perrino, Fred W. ;
Lieberman, Judy .
MOLECULAR CELL, 2006, 23 (01) :133-142
[7]   Repair of DNA covalently linked to protein [J].
Connelly, JC ;
Leach, DRF .
MOLECULAR CELL, 2004, 13 (03) :307-316
[8]  
Cooper MP, 2000, GENE DEV, V14, P907
[9]   Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus [J].
Crow, Yanick J. ;
Hayward, Bruce E. ;
Parmar, Rekha ;
Robins, Peter ;
Leitch, Andrea ;
Ali, Manir ;
Black, Deborah N. ;
van Bokhoven, Hans ;
Brunner, Han G. ;
Hamel, Ben C. ;
Corry, Peter C. ;
Cowan, Frances M. ;
Frints, Suzanne G. ;
Klepper, Joerg ;
Livingston, John H. ;
Lynch, Sally Ann ;
Massey, Roger F. ;
Meritet, Jean Francois ;
Michaud, Jacques L. ;
Ponsot, Gerard ;
Voit, Thomas ;
Lebon, Pierre ;
Bonthron, David T. ;
Jackson, Andrew P. ;
Barnes, Deborah E. ;
Lindahl, Tomas .
NATURE GENETICS, 2006, 38 (08) :917-920
[10]   REPAIR OF OXIDATIVE DAMAGE TO DNA - ENZYMOLOGY AND BIOLOGY [J].
DEMPLE, B ;
HARRISON, L .
ANNUAL REVIEW OF BIOCHEMISTRY, 1994, 63 :915-948