Serial segmental duplications during primate evolution result in complex human genome architecture

被引:86
作者
Stankiewicz, P
Shaw, CJ
Withers, M
Inoue, K
Lupski, JR [1 ]
机构
[1] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[2] Baylor Coll Med, Dept Pediat, Houston, TX 77030 USA
[3] Texas Childrens Hosp, Houston, TX 77030 USA
关键词
D O I
10.1101/gr.2746604
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human genome is particularly rich in low-copy repeats (LCRs) or segmental duplications (5%-10%), and this characteristic likely distinguishes us from lower mammals such as rodents. How and why the complex human genome architecture consisting of multiple LCRs has evolved remains an open question. Using molecular and computational analyses of human and primate genomic regions, we analyzed the structure and evolution of LCRs that resulted in complex architectural features of the human genome in proximal 17p. We found that multiple LCRs of different origins are situated adjacent to one another, whereas each LCR changed at different time points between >25 to 3-7 million years ago (Mya) during primate evolution. Evolutionary studies in primates suggested communication between the LCRs by gene conversion. The DNA transposable element MERI-Charlie3 and retroviral ERVL elements were identified at the breakpoint of the t(4;19) chromosome translocation in Gorilla gorilla, suggesting a potential role for transpositions in evolution of the primate genome. Thus, a series of consecutive segmental duplication events during primate evolution resulted in complex genome architecture in proximal 17p. Some of the more recent events led to the formation of novel genes that in human are expressed primarily in the brain. Our observations support the contention that serial segmental duplication events might have orchestrated primate evolution by the generation of novel fusion/fission genes as well as potentially by genomic inversions associated with decreased recombination rates facilitating gene divergence.
引用
收藏
页码:2209 / 2220
页数:12
相关论文
共 83 条
[1]   Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements [J].
Armengol, L ;
Pujana, MA ;
Cheung, J ;
Scherer, SW ;
Estivill, X .
HUMAN MOLECULAR GENETICS, 2003, 12 (17) :2201-2208
[2]   Shuffling of genes within low-copy repeats on 22qll (LCR22) by Alu-mediated recombination events during evolution [J].
Babcock, M ;
Pavlicek, A ;
Spiteri, E ;
Kashork, CD ;
Ioshikhes, I ;
Shaffer, LG ;
Jurka, J ;
Morrow, BE .
GENOME RESEARCH, 2003, 13 (12) :2519-2532
[3]   Hotspots of mammalian chromosomal evolution [J].
Bailey, JA ;
Baertsch, R ;
Kent, WJ ;
Haussler, D ;
Eichler, EE .
GENOME BIOLOGY, 2004, 5 (04)
[4]   An Alu transposition model for the origin and expansion of human segmental duplications [J].
Bailey, JA ;
Liu, G ;
Eichler, EE .
AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 73 (04) :823-834
[5]   Human-specific duplication and mosaic transcripts: The recent paralogous structure of chromosome 22 [J].
Bailey, JA ;
Yavor, AM ;
Viggiano, L ;
Misceo, D ;
Horvath, JE ;
Archidiacono, N ;
Schwartz, S ;
Rocchi, M ;
Eichler, EE .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 70 (01) :83-100
[6]   Segmental duplications: Organization and impact within the current Human Genome Project assembly [J].
Bailey, JA ;
Yavor, AM ;
Massa, HF ;
Trask, BJ ;
Eichler, EE .
GENOME RESEARCH, 2001, 11 (06) :1005-1017
[7]   The breakpoint region of the most common isochromosome, i(17q), in human neoplasia is characterized by a complex genomic architecture with large, palindromic, low-copy repeats [J].
Barbouti, A ;
Stankiewicz, P ;
Nusbaum, C ;
Cuomo, C ;
Cook, A ;
Höglund, M ;
Johansson, B ;
Hagemeijer, A ;
Park, SS ;
Mitelman, F ;
Lupski, JR ;
Fioretos, T .
AMERICAN JOURNAL OF HUMAN GENETICS, 2004, 74 (01) :1-10
[8]   Reciprocal crossovers and a positional preference for strand exchange in recombination events resulting in deletion or duplication of chromosome 17p11.2 [J].
Bi, WM ;
Park, SS ;
Shaw, CJ ;
Withers, MA ;
Patel, PI ;
Lupski, JR .
AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 73 (06) :1302-1315
[9]   Genes in a refined Smith-Magenis syndrome critical deletion interval on chromosome 17p11.2 and the syntenic region of the mouse [J].
Bi, WM ;
Yan, J ;
Stankiewicz, P ;
Park, SS ;
Walz, K ;
Boerkoel, CF ;
Potocki, L ;
Shaffer, LG ;
Devriendt, K ;
Nowaczyk, MJM ;
Inoue, K ;
Lupski, JR .
GENOME RESEARCH, 2002, 12 (05) :713-728
[10]   Molecular mechanisms for CMT1A duplication and HNPP deletion [J].
Boerkoel, CF ;
Inoue, K ;
Reiter, LT ;
Warner, LE ;
Lupski, JR .
CHARCOT-MARIE-TOOTH DISORDERS, 1999, 883 :22-35